IDNLearn.com offers a reliable platform for finding accurate and timely answers. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.
Sagot :
To solve this problem, let's analyze the piecewise function [tex]\( f(x) \)[/tex] and verify the truth of each statement:
### Piecewise Function
[tex]\[ f(x)=\left\{\begin{array}{ll} -\frac{1}{4} x^2 + 6x + 36, & x < -2 \\ 4x - 15, & -2 \leq x < 4 \\ 3^{x-4}, & x > 4 \end{array}\right. \][/tex]
### Statement 1: The graph crosses the y-axis at [tex]\((0, -15)\)[/tex].
To find where the graph crosses the y-axis, we substitute [tex]\( x = 0 \)[/tex] into the corresponding interval for [tex]\( x \)[/tex].
For [tex]\( -2 \leq 0 < 4 \)[/tex]:
[tex]\[ f(0) = 4(0) - 15 = -15 \][/tex]
Thus, the graph crosses the y-axis at [tex]\((0, -15)\)[/tex], so this statement is true.
### Statement 2: The graph has a point of discontinuity at [tex]\( x = -2 \)[/tex].
We need to check the value of [tex]\( f(x) \)[/tex] from the left and from the right at [tex]\( x = -2 \)[/tex] to see if they are equal.
From the left ([tex]\( x < -2 \)[/tex]):
[tex]\[ \lim_{x \to -2^-} f(x) = -\frac{1}{4} (-2)^2 + 6(-2) + 36 \][/tex]
[tex]\[ = -1 + (-12) + 36 = 23 \][/tex]
From the right ([tex]\( -2 \leq x < 4 \)[/tex]):
[tex]\[ \lim_{x \to -2^+} f(x) = 4(-2) - 15 \][/tex]
[tex]\[ = -8 - 15 = -23 \][/tex]
Since [tex]\( 23 \neq -23 \)[/tex], the function is discontinuous at [tex]\( x = -2 \)[/tex]. Therefore, this statement is true.
### Statement 3: The graph is increasing over the interval [tex]\( (4, \infty) \)[/tex].
For [tex]\( x > 4 \)[/tex]:
[tex]\[ f(x) = 3^{x-4} \][/tex]
To determine if the graph is increasing, we need to check if the derivative is positive for [tex]\( x > 4 \)[/tex].
[tex]\[ \frac{d}{dx} f(x) = \frac{d}{dx} 3^{x-4} = 3^{x-4} \ln(3) \][/tex]
Since [tex]\( 3^{x-4} \)[/tex] and [tex]\( \ln(3) \)[/tex] are both positive for all [tex]\( x > 4 \)[/tex], the derivative is positive, and the function is indeed increasing over this interval. Hence, this statement is true.
### Statement 4: The graph is decreasing over the interval [tex]\( (-12, -2) \)[/tex].
For [tex]\(-\infty < x < -2\)[/tex]:
[tex]\[ f(x) = -\frac{1}{4} x^2 + 6x + 36 \][/tex]
The derivative gives us:
[tex]\[ \frac{d}{dx} f(x) = -\frac{1}{2} x + 6 \][/tex]
For [tex]\( -12 < x < -2 \)[/tex]:
[tex]\[ -\frac{1}{2} x + 6 \][/tex]
Substitute any [tex]\( x \)[/tex] in [tex]\( (-12, -2) \)[/tex] to verify if the derivative is negative.
Let's test with [tex]\( x = -3 \)[/tex]:
[tex]\[ -\frac{1}{2}(-3) + 6 = \frac{3}{2} + 6 = 7.5 \][/tex]
This value is positive rather than negative, indicating the function is actually increasing, not decreasing, in the interval [tex]\( (-12, -2) \)[/tex]. Therefore, this statement is false.
### Statement 5: The domain of the function is all real numbers.
The function [tex]\( f(x) \)[/tex] is defined for all [tex]\( x \in \mathbb{R} \)[/tex]. Each piece provided covers all possible [tex]\( x \)[/tex] values within their respective intervals, so the function is defined for all real numbers. Thus, this statement is true.
### Summary Table
[tex]\[ \begin{tabular}{|l|l|l|} \hline \text{The graph crosses the } y \text{-axis at } (0, -15) & \text{true} & \text{false} \\ \hline \text{The graph has a point of discontinuity at } x = -2 & \text{true} & \text{false} \\ \hline \text{The graph is increasing over the interval } (4, \infty) & \text{true} & \text{false} \\ \hline \text{The graph is decreasing over the interval } (-12, -2) & \text{true} & \text{false} \\ \hline \text{The domain of the function is all real numbers} & \text{true} & \text{false} \\ \hline \end{tabular} \][/tex]
### Piecewise Function
[tex]\[ f(x)=\left\{\begin{array}{ll} -\frac{1}{4} x^2 + 6x + 36, & x < -2 \\ 4x - 15, & -2 \leq x < 4 \\ 3^{x-4}, & x > 4 \end{array}\right. \][/tex]
### Statement 1: The graph crosses the y-axis at [tex]\((0, -15)\)[/tex].
To find where the graph crosses the y-axis, we substitute [tex]\( x = 0 \)[/tex] into the corresponding interval for [tex]\( x \)[/tex].
For [tex]\( -2 \leq 0 < 4 \)[/tex]:
[tex]\[ f(0) = 4(0) - 15 = -15 \][/tex]
Thus, the graph crosses the y-axis at [tex]\((0, -15)\)[/tex], so this statement is true.
### Statement 2: The graph has a point of discontinuity at [tex]\( x = -2 \)[/tex].
We need to check the value of [tex]\( f(x) \)[/tex] from the left and from the right at [tex]\( x = -2 \)[/tex] to see if they are equal.
From the left ([tex]\( x < -2 \)[/tex]):
[tex]\[ \lim_{x \to -2^-} f(x) = -\frac{1}{4} (-2)^2 + 6(-2) + 36 \][/tex]
[tex]\[ = -1 + (-12) + 36 = 23 \][/tex]
From the right ([tex]\( -2 \leq x < 4 \)[/tex]):
[tex]\[ \lim_{x \to -2^+} f(x) = 4(-2) - 15 \][/tex]
[tex]\[ = -8 - 15 = -23 \][/tex]
Since [tex]\( 23 \neq -23 \)[/tex], the function is discontinuous at [tex]\( x = -2 \)[/tex]. Therefore, this statement is true.
### Statement 3: The graph is increasing over the interval [tex]\( (4, \infty) \)[/tex].
For [tex]\( x > 4 \)[/tex]:
[tex]\[ f(x) = 3^{x-4} \][/tex]
To determine if the graph is increasing, we need to check if the derivative is positive for [tex]\( x > 4 \)[/tex].
[tex]\[ \frac{d}{dx} f(x) = \frac{d}{dx} 3^{x-4} = 3^{x-4} \ln(3) \][/tex]
Since [tex]\( 3^{x-4} \)[/tex] and [tex]\( \ln(3) \)[/tex] are both positive for all [tex]\( x > 4 \)[/tex], the derivative is positive, and the function is indeed increasing over this interval. Hence, this statement is true.
### Statement 4: The graph is decreasing over the interval [tex]\( (-12, -2) \)[/tex].
For [tex]\(-\infty < x < -2\)[/tex]:
[tex]\[ f(x) = -\frac{1}{4} x^2 + 6x + 36 \][/tex]
The derivative gives us:
[tex]\[ \frac{d}{dx} f(x) = -\frac{1}{2} x + 6 \][/tex]
For [tex]\( -12 < x < -2 \)[/tex]:
[tex]\[ -\frac{1}{2} x + 6 \][/tex]
Substitute any [tex]\( x \)[/tex] in [tex]\( (-12, -2) \)[/tex] to verify if the derivative is negative.
Let's test with [tex]\( x = -3 \)[/tex]:
[tex]\[ -\frac{1}{2}(-3) + 6 = \frac{3}{2} + 6 = 7.5 \][/tex]
This value is positive rather than negative, indicating the function is actually increasing, not decreasing, in the interval [tex]\( (-12, -2) \)[/tex]. Therefore, this statement is false.
### Statement 5: The domain of the function is all real numbers.
The function [tex]\( f(x) \)[/tex] is defined for all [tex]\( x \in \mathbb{R} \)[/tex]. Each piece provided covers all possible [tex]\( x \)[/tex] values within their respective intervals, so the function is defined for all real numbers. Thus, this statement is true.
### Summary Table
[tex]\[ \begin{tabular}{|l|l|l|} \hline \text{The graph crosses the } y \text{-axis at } (0, -15) & \text{true} & \text{false} \\ \hline \text{The graph has a point of discontinuity at } x = -2 & \text{true} & \text{false} \\ \hline \text{The graph is increasing over the interval } (4, \infty) & \text{true} & \text{false} \\ \hline \text{The graph is decreasing over the interval } (-12, -2) & \text{true} & \text{false} \\ \hline \text{The domain of the function is all real numbers} & \text{true} & \text{false} \\ \hline \end{tabular} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.