Connect with a global community of experts on IDNLearn.com. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
To minimize the objective function [tex]\( P = 5x - 27y + 1 \)[/tex] subject to the given constraints [tex]\( y \leq 3 \)[/tex], [tex]\( y + x \geq 0 \)[/tex], and [tex]\( y \geq x - 2 \)[/tex], we follow these steps:
1. Rewrite the constraints in a standard form:
[tex]\[ \begin{array}{l} y \leq 3 \\ y + x \geq 0 \quad \text{or} \quad x \geq -y \\ y \geq x - 2 \quad \text{or} \quad y - x \geq -2 \end{array} \][/tex]
2. Identify the feasible region: The constraints define a region in the (x, y) coordinate system where all these inequalities are satisfied. This region is a polygonal area on the graph.
3. Find the vertices of the feasible region: The vertices are the points of intersection of the boundary lines of the constraints. To find these points, solve the equations of intersecting lines:
- Intersection of [tex]\( y \leq 3 \)[/tex] and [tex]\( y + x \geq 0 \)[/tex]:
[tex]\[ y = 3,\; x = -3 \][/tex]
The point is [tex]\((-3, 3)\)[/tex].
- Intersection of [tex]\( y \leq 3 \)[/tex] and [tex]\( y \geq x - 2 \)[/tex]:
[tex]\[ y = 3,\; y = x - 2 \implies 3 = x - 2 \implies x = 5 \][/tex]
The point is [tex]\((5, 3)\)[/tex].
- Intersection of [tex]\( y + x \geq 0 \)[/tex] and [tex]\( y \geq x - 2 \)[/tex]:
[tex]\[ y = -x,\; y = x - 2 \implies -x = x - 2 \implies 2x = 2 \implies x = 1,\; y = -1 \][/tex]
The point is [tex]\((1, -1)\)[/tex].
4. Evaluate the objective function [tex]\( P(x, y) = 5x - 27y + 1 \)[/tex] at these vertices:
- At [tex]\((-3, 3)\)[/tex]:
[tex]\[ P(-3, 3) = 5(-3) - 27(3) + 1 = -15 - 81 + 1 = -95 \][/tex]
- At [tex]\((5, 3)\)[/tex]:
[tex]\[ P(5, 3) = 5(5) - 27(3) + 1 = 25 - 81 + 1 = -55 \][/tex]
- At [tex]\((1, -1)\)[/tex]:
[tex]\[ P(1, -1) = 5(1) - 27(-1) + 1 = 5 + 27 + 1 = 33 \][/tex]
Therefore, the minimum value of [tex]\( P \)[/tex] over the feasible region is [tex]\( -95 \)[/tex] at the point [tex]\((-3, 3)\)[/tex].
The minimum is: [tex]\(-95\)[/tex] at [tex]\((-3, 3)\)[/tex].
1. Rewrite the constraints in a standard form:
[tex]\[ \begin{array}{l} y \leq 3 \\ y + x \geq 0 \quad \text{or} \quad x \geq -y \\ y \geq x - 2 \quad \text{or} \quad y - x \geq -2 \end{array} \][/tex]
2. Identify the feasible region: The constraints define a region in the (x, y) coordinate system where all these inequalities are satisfied. This region is a polygonal area on the graph.
3. Find the vertices of the feasible region: The vertices are the points of intersection of the boundary lines of the constraints. To find these points, solve the equations of intersecting lines:
- Intersection of [tex]\( y \leq 3 \)[/tex] and [tex]\( y + x \geq 0 \)[/tex]:
[tex]\[ y = 3,\; x = -3 \][/tex]
The point is [tex]\((-3, 3)\)[/tex].
- Intersection of [tex]\( y \leq 3 \)[/tex] and [tex]\( y \geq x - 2 \)[/tex]:
[tex]\[ y = 3,\; y = x - 2 \implies 3 = x - 2 \implies x = 5 \][/tex]
The point is [tex]\((5, 3)\)[/tex].
- Intersection of [tex]\( y + x \geq 0 \)[/tex] and [tex]\( y \geq x - 2 \)[/tex]:
[tex]\[ y = -x,\; y = x - 2 \implies -x = x - 2 \implies 2x = 2 \implies x = 1,\; y = -1 \][/tex]
The point is [tex]\((1, -1)\)[/tex].
4. Evaluate the objective function [tex]\( P(x, y) = 5x - 27y + 1 \)[/tex] at these vertices:
- At [tex]\((-3, 3)\)[/tex]:
[tex]\[ P(-3, 3) = 5(-3) - 27(3) + 1 = -15 - 81 + 1 = -95 \][/tex]
- At [tex]\((5, 3)\)[/tex]:
[tex]\[ P(5, 3) = 5(5) - 27(3) + 1 = 25 - 81 + 1 = -55 \][/tex]
- At [tex]\((1, -1)\)[/tex]:
[tex]\[ P(1, -1) = 5(1) - 27(-1) + 1 = 5 + 27 + 1 = 33 \][/tex]
Therefore, the minimum value of [tex]\( P \)[/tex] over the feasible region is [tex]\( -95 \)[/tex] at the point [tex]\((-3, 3)\)[/tex].
The minimum is: [tex]\(-95\)[/tex] at [tex]\((-3, 3)\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.