IDNLearn.com provides a collaborative platform for sharing and gaining knowledge. Join our community to access reliable and comprehensive responses to your questions from experienced professionals.
Sagot :
Alright, let's break this problem down step-by-step to understand and solve it.
### Given Data:
1. Osmotic Pressure ([tex]\(\Pi\)[/tex]) = 1.779 atm
2. Mass of Solute (m) = 1.37 grams
3. Volume of Solution (V) = 100 cm[tex]\(^3\)[/tex] = 0.1 liters (since 1 liter = 1000 cm[tex]\(^3\)[/tex])
4. Temperature (T) = 17°C = 290.15 K (we convert from Celsius to Kelvin by adding 273.15)
5. Universal Gas Constant (R) = 0.0821 L atm K[tex]\(^{-1}\)[/tex] mol[tex]\(^{-1}\)[/tex]
### Steps to Find the Molar Mass:
1. Convert Osmotic Pressure to Required Units:
[tex]\[ \Pi = 1.779 \text{ atm} \][/tex]
2. Convert Volume to Liters (already given as 0.1 liters):
[tex]\[ V = 0.1 \, \text{L} \][/tex]
3. Convert Temperature to Kelvin (already given conversion):
[tex]\[ T = 290.15 \, \text{K} \][/tex]
4. Calculate the Number of Moles of Solute ([tex]\(n\)[/tex]) using the osmotic pressure formula:
The osmotic pressure formula is given by:
[tex]\[ \Pi = \frac{nRT}{V} \][/tex]
Rearranging to solve for [tex]\(n\)[/tex] (number of moles):
[tex]\[ n = \frac{\Pi \cdot V}{R \cdot T} \][/tex]
Substituting the given values:
[tex]\[ n = \frac{1.779 \, \text{atm} \times 0.1 \, \text{L}}{0.0821 \, \text{L atm K}^{-1} \times 290.15 \, \text{K}} \][/tex]
From the given calculation, we know the number of moles:
[tex]\[ n = 0.0074681015720584705 \, \text{moles} \][/tex]
5. Calculate the Molar Mass (M):
The molar mass (M) can be found using the formula:
[tex]\[ M = \frac{m}{n} \][/tex]
Where [tex]\(m\)[/tex] is the mass of the solute in grams and [tex]\(n\)[/tex] is the number of moles calculated above.
Substituting the values:
[tex]\[ M = \frac{1.37 \, \text{g}}{0.0074681015720584705 \, \text{moles}} \][/tex]
From the given result, we know the molar mass:
[tex]\[ M = 183.44688898257448 \, \text{g/mol} \][/tex]
### Conclusion:
The relative molecular mass of the solute, given the osmotic pressure conditions, is approximately [tex]\(183.45 \, \text{g/mol}\)[/tex].
This step-by-step solution provides a detailed and comprehensive method for calculating the molar mass of the solute using the provided data and formulas.
### Given Data:
1. Osmotic Pressure ([tex]\(\Pi\)[/tex]) = 1.779 atm
2. Mass of Solute (m) = 1.37 grams
3. Volume of Solution (V) = 100 cm[tex]\(^3\)[/tex] = 0.1 liters (since 1 liter = 1000 cm[tex]\(^3\)[/tex])
4. Temperature (T) = 17°C = 290.15 K (we convert from Celsius to Kelvin by adding 273.15)
5. Universal Gas Constant (R) = 0.0821 L atm K[tex]\(^{-1}\)[/tex] mol[tex]\(^{-1}\)[/tex]
### Steps to Find the Molar Mass:
1. Convert Osmotic Pressure to Required Units:
[tex]\[ \Pi = 1.779 \text{ atm} \][/tex]
2. Convert Volume to Liters (already given as 0.1 liters):
[tex]\[ V = 0.1 \, \text{L} \][/tex]
3. Convert Temperature to Kelvin (already given conversion):
[tex]\[ T = 290.15 \, \text{K} \][/tex]
4. Calculate the Number of Moles of Solute ([tex]\(n\)[/tex]) using the osmotic pressure formula:
The osmotic pressure formula is given by:
[tex]\[ \Pi = \frac{nRT}{V} \][/tex]
Rearranging to solve for [tex]\(n\)[/tex] (number of moles):
[tex]\[ n = \frac{\Pi \cdot V}{R \cdot T} \][/tex]
Substituting the given values:
[tex]\[ n = \frac{1.779 \, \text{atm} \times 0.1 \, \text{L}}{0.0821 \, \text{L atm K}^{-1} \times 290.15 \, \text{K}} \][/tex]
From the given calculation, we know the number of moles:
[tex]\[ n = 0.0074681015720584705 \, \text{moles} \][/tex]
5. Calculate the Molar Mass (M):
The molar mass (M) can be found using the formula:
[tex]\[ M = \frac{m}{n} \][/tex]
Where [tex]\(m\)[/tex] is the mass of the solute in grams and [tex]\(n\)[/tex] is the number of moles calculated above.
Substituting the values:
[tex]\[ M = \frac{1.37 \, \text{g}}{0.0074681015720584705 \, \text{moles}} \][/tex]
From the given result, we know the molar mass:
[tex]\[ M = 183.44688898257448 \, \text{g/mol} \][/tex]
### Conclusion:
The relative molecular mass of the solute, given the osmotic pressure conditions, is approximately [tex]\(183.45 \, \text{g/mol}\)[/tex].
This step-by-step solution provides a detailed and comprehensive method for calculating the molar mass of the solute using the provided data and formulas.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.