IDNLearn.com: Where your questions are met with thoughtful and precise answers. Our platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
It seems that you've included multiple questions within your prompt. Let's break them down one by one for clarity and understanding.
### 5b. Evaluate the Double Integral [tex]$\int_0^1 \int_0^2 (x^2 + y^2) \, dA$[/tex]
To evaluate the given double integral, follow these steps:
1. Set Up the Double Integral:
[tex]\[ \int_{0}^{1} \int_{0}^{2} (x^2 + y^2) \, dx \, dy \][/tex]
2. Integrate with Respect to x First:
Consider the inner integral:
[tex]\[ \int_{0}^{2} (x^2 + y^2) \, dx \][/tex]
This can be broken down as:
[tex]\[ \int_{0}^{2} x^2 \, dx + \int_{0}^{2} y^2 \, dx \][/tex]
3. Integrate [tex]$x^2$[/tex] with Respect to [tex]$x$[/tex]:
[tex]\[ \int_{0}^{2} x^2 \, dx = \left[\frac{x^3}{3}\right]_0^2 = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3} \][/tex]
4. Integrate [tex]$y^2$[/tex] with Respect to [tex]$x$[/tex]:
Since [tex]$y^2$[/tex] is a constant with respect to [tex]$x$[/tex], it comes out of the integral:
[tex]\[ \int_{0}^{2} y^2 \, dx = y^2 \int_{0}^{2} 1 \, dx = y^2 [x]_0^2 = y^2 (2 - 0) = 2y^2 \][/tex]
5. Combine the Results:
[tex]\[ \int_{0}^{2} (x^2 + y^2) \, dx = \frac{8}{3} + 2y^2 \][/tex]
6. Integrate with Respect to [tex]$y$[/tex] Next:
Now consider the outer integral:
[tex]\[ \int_{0}^{1} \left(\frac{8}{3} + 2y^2\right) \, dy \][/tex]
7. Integrate [tex]$\frac{8}{3}$[/tex] with Respect to [tex]$y$[/tex]:
[tex]\[ \int_{0}^{1} \frac{8}{3} \, dy = \frac{8}{3} \left[y\right]_0^1 = \frac{8}{3} (1 - 0) = \frac{8}{3} \][/tex]
8. Integrate [tex]$2y^2$[/tex] with Respect to [tex]$y$[/tex]:
[tex]\[ \int_{0}^{1} 2y^2 \, dy = 2 \int_{0}^{1} y^2 \, dy = 2 \left[\frac{y^3}{3}\right]_0^1 = 2 \cdot \frac{1^3}{3} = \frac{2}{3} \][/tex]
9. Combine the Results:
[tex]\[ \int_{0}^{1} \int_{0}^{2} (x^2 + y^2) \, dA = \frac{8}{3} + \frac{2}{3} = \frac{10}{3} \][/tex]
Thus, the value of the double integral is given by:
[tex]\[ \int_{0}^{1} \int_{0}^{2} (x^2 + y^2) \, dA = \frac{10}{3} \][/tex]
### 6. Find the Angle Between the Surface [tex]$x^2 + y^2 + z^2 = 9$[/tex] and [tex]$z = x^2 + y^2 - 3$[/tex] at [tex]$(2, -1, 2)$[/tex]
To find the angle between two surfaces at a given point, we need to compute the angle between their normal vectors at that point. The normal vector to a surface defined by [tex]$f(x, y, z) = 0$[/tex] is given by the gradient [tex]$\nabla f$[/tex].
1. Find the Gradient of the First Surface [tex]$x^2 + y^2 + z^2 = 9$[/tex]:
[tex]\[ \nabla f = \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) (x^2 + y^2 + z^2) = (2x, 2y, 2z) \][/tex]
At the point [tex]$(2, -1, 2)$[/tex], the gradient is:
[tex]\[ \nabla f(2, -1, 2) = (2 \cdot 2, 2 \cdot -1, 2 \cdot 2) = (4, -2, 4) \][/tex]
2. Find the Gradient of the Second Surface [tex]$z = x^2 + y^2 - 3$[/tex]:
Rewrite this as [tex]$g(x, y, z) = x^2 + y^2 - z - 3 = 0$[/tex] and find its gradient:
[tex]\[ \nabla g = \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) (x^2 + y^2 - z - 3) = (2x, 2y, -1) \][/tex]
At the point [tex]$(2, -1, 2)$[/tex], the gradient is:
[tex]\[ \nabla g(2, -1, 2) = (2 \cdot 2, 2 \cdot -1, -1) = (4, -2, -1) \][/tex]
3. Calculate the Dot Product of the Two Normal Vectors:
[tex]\[ \nabla f \cdot \nabla g = (4, -2, 4) \cdot (4, -2, -1) = 4 \cdot 4 + (-2) \cdot (-2) + 4 \cdot (-1) = 16 + 4 - 4 = 16 \][/tex]
4. Calculate the Magnitudes of the Normal Vectors:
[tex]\[ |\nabla f| = \sqrt{4^2 + (-2)^2 + 4^2} = \sqrt{16 + 4 + 16} = \sqrt{36} = 6 \][/tex]
[tex]\[ |\nabla g| = \sqrt{4^2 + (-2)^2 + (-1)^2} = \sqrt{16 + 4 + 1} = \sqrt{21} \][/tex]
5. Use the Dot Product to Find the Cosine of the Angle [tex]$\theta$[/tex]:
[tex]\[ \cos \theta = \frac{\nabla f \cdot \nabla g}{|\nabla f| |\nabla g|} = \frac{16}{6 \sqrt{21}} = \frac{16}{6 \sqrt{21}} = \frac{8}{3 \sqrt{21}} \][/tex]
6. Find the Actual Angle:
[tex]\[ \theta = \cos^{-1} \left( \frac{8}{3 \sqrt{21}} \right) \][/tex]
Therefore, the angle between the surfaces [tex]$x^2 + y^2 + z^2 = 9$[/tex] and [tex]$z = x^2 + y^2 - 3$[/tex] at the point [tex]$(2, -1, 2)$[/tex] is:
[tex]\[ \theta = \cos^{-1} \left( \frac{8}{3 \sqrt{21}} \right) \][/tex]
### (ib) Find the Limit of the Following Functions:
You didn't specify the functions for which the limits need to be found, but here's the general approach:
1. Identify the Function and the Point of Interest:
Determine the function [tex]$f(x)$[/tex] or [tex]$f(x, y)$[/tex] for which you need to find the limit as [tex]$x \to a$[/tex] or [tex]$(x, y) \to (a, b)$[/tex].
2. Evaluate the Limit:
- For one-variable functions, directly substitute the point into the function if it is continuous at that point.
- For multivariable functions, consider approaching the point from different paths to ensure the limit is the same from all directions.
If you provide specific functions, I can give you a detailed step-by-step solution for those limits.
### 5b. Evaluate the Double Integral [tex]$\int_0^1 \int_0^2 (x^2 + y^2) \, dA$[/tex]
To evaluate the given double integral, follow these steps:
1. Set Up the Double Integral:
[tex]\[ \int_{0}^{1} \int_{0}^{2} (x^2 + y^2) \, dx \, dy \][/tex]
2. Integrate with Respect to x First:
Consider the inner integral:
[tex]\[ \int_{0}^{2} (x^2 + y^2) \, dx \][/tex]
This can be broken down as:
[tex]\[ \int_{0}^{2} x^2 \, dx + \int_{0}^{2} y^2 \, dx \][/tex]
3. Integrate [tex]$x^2$[/tex] with Respect to [tex]$x$[/tex]:
[tex]\[ \int_{0}^{2} x^2 \, dx = \left[\frac{x^3}{3}\right]_0^2 = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3} \][/tex]
4. Integrate [tex]$y^2$[/tex] with Respect to [tex]$x$[/tex]:
Since [tex]$y^2$[/tex] is a constant with respect to [tex]$x$[/tex], it comes out of the integral:
[tex]\[ \int_{0}^{2} y^2 \, dx = y^2 \int_{0}^{2} 1 \, dx = y^2 [x]_0^2 = y^2 (2 - 0) = 2y^2 \][/tex]
5. Combine the Results:
[tex]\[ \int_{0}^{2} (x^2 + y^2) \, dx = \frac{8}{3} + 2y^2 \][/tex]
6. Integrate with Respect to [tex]$y$[/tex] Next:
Now consider the outer integral:
[tex]\[ \int_{0}^{1} \left(\frac{8}{3} + 2y^2\right) \, dy \][/tex]
7. Integrate [tex]$\frac{8}{3}$[/tex] with Respect to [tex]$y$[/tex]:
[tex]\[ \int_{0}^{1} \frac{8}{3} \, dy = \frac{8}{3} \left[y\right]_0^1 = \frac{8}{3} (1 - 0) = \frac{8}{3} \][/tex]
8. Integrate [tex]$2y^2$[/tex] with Respect to [tex]$y$[/tex]:
[tex]\[ \int_{0}^{1} 2y^2 \, dy = 2 \int_{0}^{1} y^2 \, dy = 2 \left[\frac{y^3}{3}\right]_0^1 = 2 \cdot \frac{1^3}{3} = \frac{2}{3} \][/tex]
9. Combine the Results:
[tex]\[ \int_{0}^{1} \int_{0}^{2} (x^2 + y^2) \, dA = \frac{8}{3} + \frac{2}{3} = \frac{10}{3} \][/tex]
Thus, the value of the double integral is given by:
[tex]\[ \int_{0}^{1} \int_{0}^{2} (x^2 + y^2) \, dA = \frac{10}{3} \][/tex]
### 6. Find the Angle Between the Surface [tex]$x^2 + y^2 + z^2 = 9$[/tex] and [tex]$z = x^2 + y^2 - 3$[/tex] at [tex]$(2, -1, 2)$[/tex]
To find the angle between two surfaces at a given point, we need to compute the angle between their normal vectors at that point. The normal vector to a surface defined by [tex]$f(x, y, z) = 0$[/tex] is given by the gradient [tex]$\nabla f$[/tex].
1. Find the Gradient of the First Surface [tex]$x^2 + y^2 + z^2 = 9$[/tex]:
[tex]\[ \nabla f = \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) (x^2 + y^2 + z^2) = (2x, 2y, 2z) \][/tex]
At the point [tex]$(2, -1, 2)$[/tex], the gradient is:
[tex]\[ \nabla f(2, -1, 2) = (2 \cdot 2, 2 \cdot -1, 2 \cdot 2) = (4, -2, 4) \][/tex]
2. Find the Gradient of the Second Surface [tex]$z = x^2 + y^2 - 3$[/tex]:
Rewrite this as [tex]$g(x, y, z) = x^2 + y^2 - z - 3 = 0$[/tex] and find its gradient:
[tex]\[ \nabla g = \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) (x^2 + y^2 - z - 3) = (2x, 2y, -1) \][/tex]
At the point [tex]$(2, -1, 2)$[/tex], the gradient is:
[tex]\[ \nabla g(2, -1, 2) = (2 \cdot 2, 2 \cdot -1, -1) = (4, -2, -1) \][/tex]
3. Calculate the Dot Product of the Two Normal Vectors:
[tex]\[ \nabla f \cdot \nabla g = (4, -2, 4) \cdot (4, -2, -1) = 4 \cdot 4 + (-2) \cdot (-2) + 4 \cdot (-1) = 16 + 4 - 4 = 16 \][/tex]
4. Calculate the Magnitudes of the Normal Vectors:
[tex]\[ |\nabla f| = \sqrt{4^2 + (-2)^2 + 4^2} = \sqrt{16 + 4 + 16} = \sqrt{36} = 6 \][/tex]
[tex]\[ |\nabla g| = \sqrt{4^2 + (-2)^2 + (-1)^2} = \sqrt{16 + 4 + 1} = \sqrt{21} \][/tex]
5. Use the Dot Product to Find the Cosine of the Angle [tex]$\theta$[/tex]:
[tex]\[ \cos \theta = \frac{\nabla f \cdot \nabla g}{|\nabla f| |\nabla g|} = \frac{16}{6 \sqrt{21}} = \frac{16}{6 \sqrt{21}} = \frac{8}{3 \sqrt{21}} \][/tex]
6. Find the Actual Angle:
[tex]\[ \theta = \cos^{-1} \left( \frac{8}{3 \sqrt{21}} \right) \][/tex]
Therefore, the angle between the surfaces [tex]$x^2 + y^2 + z^2 = 9$[/tex] and [tex]$z = x^2 + y^2 - 3$[/tex] at the point [tex]$(2, -1, 2)$[/tex] is:
[tex]\[ \theta = \cos^{-1} \left( \frac{8}{3 \sqrt{21}} \right) \][/tex]
### (ib) Find the Limit of the Following Functions:
You didn't specify the functions for which the limits need to be found, but here's the general approach:
1. Identify the Function and the Point of Interest:
Determine the function [tex]$f(x)$[/tex] or [tex]$f(x, y)$[/tex] for which you need to find the limit as [tex]$x \to a$[/tex] or [tex]$(x, y) \to (a, b)$[/tex].
2. Evaluate the Limit:
- For one-variable functions, directly substitute the point into the function if it is continuous at that point.
- For multivariable functions, consider approaching the point from different paths to ensure the limit is the same from all directions.
If you provide specific functions, I can give you a detailed step-by-step solution for those limits.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.