IDNLearn.com is the perfect place to get answers, share knowledge, and learn new things. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Certainly! Let's solve the problem step by step.
Given vectors:
[tex]\[ v = 4\mathbf{i} + 5\mathbf{j} \][/tex]
[tex]\[ w = -2\mathbf{i} + 3\mathbf{j} \][/tex]
### 1. Find the dot product [tex]\( v \cdot w \)[/tex]:
[tex]\[ v \cdot w = (4)(-2) + (5)(3) = -8 + 15 = 7 \][/tex]
### 2. Find the dot product [tex]\( w \cdot w \)[/tex] (this is the magnitude squared of [tex]\( w \)[/tex]):
[tex]\[ w \cdot w = (-2)^2 + (3)^2 = 4 + 9 = 13 \][/tex]
### 3. Calculate the projection of [tex]\( v \)[/tex] onto [tex]\( w \)[/tex], denoted as [tex]\( \operatorname{proj}_{w} v \)[/tex]:
The formula for projection is:
[tex]\[ \operatorname{proj}_{w} v = \left( \frac{v \cdot w}{w \cdot w} \right) w \][/tex]
First, find the scalar multiplier:
[tex]\[ \frac{v \cdot w}{w \cdot w} = \frac{7}{13} \][/tex]
Then multiply this scalar by the vector [tex]\( w \)[/tex]:
[tex]\[ \operatorname{proj}_{w} v = \frac{7}{13} w = \frac{7}{13} (-2\mathbf{i} + 3\mathbf{j}) = \left( \frac{7}{13} \times -2 \right)\mathbf{i} + \left( \frac{7}{13} \times 3 \right)\mathbf{j} \][/tex]
Calculate the components separately:
[tex]\[ \frac{7}{13} \times -2 = -1.0769230769230769 \][/tex]
[tex]\[ \frac{7}{13} \times 3 = 1.6153846153846154 \][/tex]
So,
[tex]\[ \operatorname{proj}_{w} v = -1.0769230769230769\mathbf{i} + 1.6153846153846154\mathbf{j} \][/tex]
### 4. Decompose [tex]\( v \)[/tex]:
To decompose [tex]\( v \)[/tex] into the sum of its projection onto [tex]\( w \)[/tex] and the perpendicular component, we use:
[tex]\[ v = \operatorname{proj}_{w} v + \text{(perpendicular component)} \][/tex]
The perpendicular component is:
[tex]\[ \text{perpendicular component} = v - \operatorname{proj}_{w} v \][/tex]
Subtract the projection from [tex]\( v \)[/tex]:
[tex]\[ v - \operatorname{proj}_{w} v = (4\mathbf{i} + 5\mathbf{j}) - (-1.0769230769230769\mathbf{i} + 1.6153846153846154\mathbf{j}) \][/tex]
[tex]\[ = (4 + 1.0769230769230769)\mathbf{i} + (5 - 1.6153846153846154)\mathbf{j} \][/tex]
Calculate the components separately:
[tex]\[ 4 + 1.0769230769230769 = 5.076923076923077 \][/tex]
[tex]\[ 5 - 1.6153846153846154 = 3.3846153846153846 \][/tex]
Thus, the perpendicular component is:
[tex]\[ 5.076923076923077\mathbf{i} + 3.3846153846153846\mathbf{j} \][/tex]
### Summary:
- The projection of [tex]\( v \)[/tex] onto [tex]\( w \)[/tex], [tex]\( \operatorname{proj}_{w} v \)[/tex], is:
[tex]\[ -1.0769230769230769\mathbf{i} + 1.6153846153846154\mathbf{j} \][/tex]
- The perpendicular component of [tex]\( v \)[/tex] relative to [tex]\( w \)[/tex] is:
[tex]\[ 5.076923076923077\mathbf{i} + 3.3846153846153846\mathbf{j} \][/tex]
So, we have decomposed [tex]\( v \)[/tex] as:
[tex]\[ v = \operatorname{proj}_{w} v + \text{(perpendicular component)} \][/tex]
[tex]\[ v = (-1.0769230769230769\mathbf{i} + 1.6153846153846154\mathbf{j}) + (5.076923076923077\mathbf{i} + 3.3846153846153846\mathbf{j}) \][/tex]
Given vectors:
[tex]\[ v = 4\mathbf{i} + 5\mathbf{j} \][/tex]
[tex]\[ w = -2\mathbf{i} + 3\mathbf{j} \][/tex]
### 1. Find the dot product [tex]\( v \cdot w \)[/tex]:
[tex]\[ v \cdot w = (4)(-2) + (5)(3) = -8 + 15 = 7 \][/tex]
### 2. Find the dot product [tex]\( w \cdot w \)[/tex] (this is the magnitude squared of [tex]\( w \)[/tex]):
[tex]\[ w \cdot w = (-2)^2 + (3)^2 = 4 + 9 = 13 \][/tex]
### 3. Calculate the projection of [tex]\( v \)[/tex] onto [tex]\( w \)[/tex], denoted as [tex]\( \operatorname{proj}_{w} v \)[/tex]:
The formula for projection is:
[tex]\[ \operatorname{proj}_{w} v = \left( \frac{v \cdot w}{w \cdot w} \right) w \][/tex]
First, find the scalar multiplier:
[tex]\[ \frac{v \cdot w}{w \cdot w} = \frac{7}{13} \][/tex]
Then multiply this scalar by the vector [tex]\( w \)[/tex]:
[tex]\[ \operatorname{proj}_{w} v = \frac{7}{13} w = \frac{7}{13} (-2\mathbf{i} + 3\mathbf{j}) = \left( \frac{7}{13} \times -2 \right)\mathbf{i} + \left( \frac{7}{13} \times 3 \right)\mathbf{j} \][/tex]
Calculate the components separately:
[tex]\[ \frac{7}{13} \times -2 = -1.0769230769230769 \][/tex]
[tex]\[ \frac{7}{13} \times 3 = 1.6153846153846154 \][/tex]
So,
[tex]\[ \operatorname{proj}_{w} v = -1.0769230769230769\mathbf{i} + 1.6153846153846154\mathbf{j} \][/tex]
### 4. Decompose [tex]\( v \)[/tex]:
To decompose [tex]\( v \)[/tex] into the sum of its projection onto [tex]\( w \)[/tex] and the perpendicular component, we use:
[tex]\[ v = \operatorname{proj}_{w} v + \text{(perpendicular component)} \][/tex]
The perpendicular component is:
[tex]\[ \text{perpendicular component} = v - \operatorname{proj}_{w} v \][/tex]
Subtract the projection from [tex]\( v \)[/tex]:
[tex]\[ v - \operatorname{proj}_{w} v = (4\mathbf{i} + 5\mathbf{j}) - (-1.0769230769230769\mathbf{i} + 1.6153846153846154\mathbf{j}) \][/tex]
[tex]\[ = (4 + 1.0769230769230769)\mathbf{i} + (5 - 1.6153846153846154)\mathbf{j} \][/tex]
Calculate the components separately:
[tex]\[ 4 + 1.0769230769230769 = 5.076923076923077 \][/tex]
[tex]\[ 5 - 1.6153846153846154 = 3.3846153846153846 \][/tex]
Thus, the perpendicular component is:
[tex]\[ 5.076923076923077\mathbf{i} + 3.3846153846153846\mathbf{j} \][/tex]
### Summary:
- The projection of [tex]\( v \)[/tex] onto [tex]\( w \)[/tex], [tex]\( \operatorname{proj}_{w} v \)[/tex], is:
[tex]\[ -1.0769230769230769\mathbf{i} + 1.6153846153846154\mathbf{j} \][/tex]
- The perpendicular component of [tex]\( v \)[/tex] relative to [tex]\( w \)[/tex] is:
[tex]\[ 5.076923076923077\mathbf{i} + 3.3846153846153846\mathbf{j} \][/tex]
So, we have decomposed [tex]\( v \)[/tex] as:
[tex]\[ v = \operatorname{proj}_{w} v + \text{(perpendicular component)} \][/tex]
[tex]\[ v = (-1.0769230769230769\mathbf{i} + 1.6153846153846154\mathbf{j}) + (5.076923076923077\mathbf{i} + 3.3846153846153846\mathbf{j}) \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.