IDNLearn.com is designed to help you find reliable answers to any question you have. Ask anything and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
To solve for the number of moles in each situation, we will use the ideal gas law equation:
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure,
- [tex]\( V \)[/tex] is the volume,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant (0.0821 L·atm/(K·mol)),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
We can rearrange the equation to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
### a. At sea level [tex]\((T = 298 K, P = 1.00 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 1.00 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 298 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(1.00 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (298 \text{ K})} \][/tex]
[tex]\[ n \approx 0.24524029461534058 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs at sea level is [tex]\( \approx 0.245 \)[/tex] mol air.
### b. 10 m below water [tex]\((T = 298 K, P = 1.98 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 1.98 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 298 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(1.98 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (298 \text{ K})} \][/tex]
[tex]\[ n \approx 0.4855757833383743 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs 10 meters below water is [tex]\( \approx 0.4856 \)[/tex] mol air.
### c. At the top of Mount Everest [tex]\((T = 203 K, P = 0.297 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 0.297 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 203 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(0.297 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (203 \text{ K})} \][/tex]
[tex]\[ n \approx 0.10692235229175043 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs at the top of Mount Everest is [tex]\( \approx 0.1069 \)[/tex] mol air.
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure,
- [tex]\( V \)[/tex] is the volume,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant (0.0821 L·atm/(K·mol)),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
We can rearrange the equation to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
### a. At sea level [tex]\((T = 298 K, P = 1.00 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 1.00 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 298 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(1.00 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (298 \text{ K})} \][/tex]
[tex]\[ n \approx 0.24524029461534058 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs at sea level is [tex]\( \approx 0.245 \)[/tex] mol air.
### b. 10 m below water [tex]\((T = 298 K, P = 1.98 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 1.98 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 298 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(1.98 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (298 \text{ K})} \][/tex]
[tex]\[ n \approx 0.4855757833383743 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs 10 meters below water is [tex]\( \approx 0.4856 \)[/tex] mol air.
### c. At the top of Mount Everest [tex]\((T = 203 K, P = 0.297 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 0.297 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 203 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(0.297 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (203 \text{ K})} \][/tex]
[tex]\[ n \approx 0.10692235229175043 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs at the top of Mount Everest is [tex]\( \approx 0.1069 \)[/tex] mol air.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.