Discover the best answers to your questions with the help of IDNLearn.com. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
To solve for the number of moles in each situation, we will use the ideal gas law equation:
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure,
- [tex]\( V \)[/tex] is the volume,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant (0.0821 L·atm/(K·mol)),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
We can rearrange the equation to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
### a. At sea level [tex]\((T = 298 K, P = 1.00 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 1.00 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 298 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(1.00 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (298 \text{ K})} \][/tex]
[tex]\[ n \approx 0.24524029461534058 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs at sea level is [tex]\( \approx 0.245 \)[/tex] mol air.
### b. 10 m below water [tex]\((T = 298 K, P = 1.98 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 1.98 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 298 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(1.98 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (298 \text{ K})} \][/tex]
[tex]\[ n \approx 0.4855757833383743 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs 10 meters below water is [tex]\( \approx 0.4856 \)[/tex] mol air.
### c. At the top of Mount Everest [tex]\((T = 203 K, P = 0.297 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 0.297 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 203 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(0.297 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (203 \text{ K})} \][/tex]
[tex]\[ n \approx 0.10692235229175043 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs at the top of Mount Everest is [tex]\( \approx 0.1069 \)[/tex] mol air.
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure,
- [tex]\( V \)[/tex] is the volume,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant (0.0821 L·atm/(K·mol)),
- [tex]\( T \)[/tex] is the temperature in Kelvin.
We can rearrange the equation to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
### a. At sea level [tex]\((T = 298 K, P = 1.00 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 1.00 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 298 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(1.00 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (298 \text{ K})} \][/tex]
[tex]\[ n \approx 0.24524029461534058 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs at sea level is [tex]\( \approx 0.245 \)[/tex] mol air.
### b. 10 m below water [tex]\((T = 298 K, P = 1.98 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 1.98 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 298 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(1.98 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (298 \text{ K})} \][/tex]
[tex]\[ n \approx 0.4855757833383743 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs 10 meters below water is [tex]\( \approx 0.4856 \)[/tex] mol air.
### c. At the top of Mount Everest [tex]\((T = 203 K, P = 0.297 atm)\)[/tex]:
1. Variables:
- [tex]\( P = 0.297 \)[/tex] atm
- [tex]\( V = 6.0 \)[/tex] L
- [tex]\( T = 203 \)[/tex] K
- [tex]\( R = 0.0821 \)[/tex] L·atm/(K·mol)
2. Calculation:
[tex]\[ n = \frac{(0.297 \text{ atm}) \times (6.0 \text{ L})}{(0.0821 \text{ L·atm/(K·mol)}) \times (203 \text{ K})} \][/tex]
[tex]\[ n \approx 0.10692235229175043 \text{ mol} \][/tex]
Thus, the number of moles of air in your lungs at the top of Mount Everest is [tex]\( \approx 0.1069 \)[/tex] mol air.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.