Connect with a knowledgeable community and get your questions answered on IDNLearn.com. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.
Sagot :
To determine how many terms of the series [tex]\(2 + 4 + 6 + 8 + \ldots\)[/tex] must be taken so that the sum is [tex]\(100\)[/tex], we follow these steps:
1. Identify the Series:
This is an arithmetic series where the first term ([tex]\(a\)[/tex]) is [tex]\(2\)[/tex] and the common difference ([tex]\(d\)[/tex]) is also [tex]\(2\)[/tex].
2. Formulate the Sum of the First [tex]\(n\)[/tex] Terms:
The sum of the first [tex]\(n\)[/tex] terms ([tex]\(S_n\)[/tex]) of an arithmetic series can be calculated using the formula:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
Substituting the values [tex]\(a = 2\)[/tex] and [tex]\(d = 2\)[/tex], the formula becomes:
[tex]\[ S_n = \frac{n}{2} \left(2 \cdot 2 + (n-1) \cdot 2\right) = \frac{n}{2} \left(4 + 2n - 2\right) = \frac{n}{2} (2n + 2) = n (n + 1) \][/tex]
3. Set the Sum Equal to 100:
We need to find [tex]\(n\)[/tex] such that the sum [tex]\(S_n\)[/tex] equals 100:
[tex]\[ n(n + 1) = 100 \][/tex]
4. Solve the Quadratic Equation:
Rewrite the equation as a standard quadratic equation:
[tex]\[ n^2 + n - 100 = 0 \][/tex]
Solving a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] can be done using the quadratic formula:
[tex]\[ n = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -100\)[/tex]. Substituting these into the formula gives:
[tex]\[ n = \frac{{-1 \pm \sqrt{{1^2 - 4 \cdot 1 \cdot (-100)}}}}{2 \cdot 1} = \frac{{-1 \pm \sqrt{{1 + 400}}}}{2} = \frac{{-1 \pm \sqrt{401}}}{2} \][/tex]
5. Interpret the Results:
This gives two solutions:
[tex]\[ n = \frac{{-1 + \sqrt{401}}}{2} \quad \text{and} \quad n = \frac{{-1 - \sqrt{401}}}{2} \][/tex]
Since [tex]\(n\)[/tex] represents the number of terms and must be a positive integer, we discard the negative solution:
[tex]\[ n = \frac{{-1 + \sqrt{401}}}{2} \][/tex]
Simplifying numerically, we get:
[tex]\[ n \approx \frac{{20.02498438 - 1}}{2} \approx \frac{{19.02498438}}{2} \approx 9.51249219 \][/tex]
However, since the number of terms [tex]\(n\)[/tex] must be an integer, we consider the nearest integers to check which satisfies the sum exactly. Based on checking:
- If [tex]\(n = 9\)[/tex], then the sum [tex]\(S_9\)[/tex] is:
[tex]\[ S_9 = 9(9 + 1) = 90 \quad (\text{not equal to } 100) \][/tex]
- If [tex]\(n = 10\)[/tex], then the sum [tex]\(S_{10}\)[/tex] is:
[tex]\[ S_{10} = 10(10 + 1) = 110 \quad (\text{exceeds } 100) \][/tex]
The exact scenario leads us to realize the possible error in integer consideration. Nevertheless mathematically closest solution intermediate as:
The solutions derived are:
\[
n = \frac{{-1 + \sqrt{401}}}{2} \approx 9.51249219 \text{ yet leading around 9~10}
coersively best rationalised solution nearer the accurate is inline 10 for functionnato per integeric utilization.
1. Identify the Series:
This is an arithmetic series where the first term ([tex]\(a\)[/tex]) is [tex]\(2\)[/tex] and the common difference ([tex]\(d\)[/tex]) is also [tex]\(2\)[/tex].
2. Formulate the Sum of the First [tex]\(n\)[/tex] Terms:
The sum of the first [tex]\(n\)[/tex] terms ([tex]\(S_n\)[/tex]) of an arithmetic series can be calculated using the formula:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
Substituting the values [tex]\(a = 2\)[/tex] and [tex]\(d = 2\)[/tex], the formula becomes:
[tex]\[ S_n = \frac{n}{2} \left(2 \cdot 2 + (n-1) \cdot 2\right) = \frac{n}{2} \left(4 + 2n - 2\right) = \frac{n}{2} (2n + 2) = n (n + 1) \][/tex]
3. Set the Sum Equal to 100:
We need to find [tex]\(n\)[/tex] such that the sum [tex]\(S_n\)[/tex] equals 100:
[tex]\[ n(n + 1) = 100 \][/tex]
4. Solve the Quadratic Equation:
Rewrite the equation as a standard quadratic equation:
[tex]\[ n^2 + n - 100 = 0 \][/tex]
Solving a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] can be done using the quadratic formula:
[tex]\[ n = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -100\)[/tex]. Substituting these into the formula gives:
[tex]\[ n = \frac{{-1 \pm \sqrt{{1^2 - 4 \cdot 1 \cdot (-100)}}}}{2 \cdot 1} = \frac{{-1 \pm \sqrt{{1 + 400}}}}{2} = \frac{{-1 \pm \sqrt{401}}}{2} \][/tex]
5. Interpret the Results:
This gives two solutions:
[tex]\[ n = \frac{{-1 + \sqrt{401}}}{2} \quad \text{and} \quad n = \frac{{-1 - \sqrt{401}}}{2} \][/tex]
Since [tex]\(n\)[/tex] represents the number of terms and must be a positive integer, we discard the negative solution:
[tex]\[ n = \frac{{-1 + \sqrt{401}}}{2} \][/tex]
Simplifying numerically, we get:
[tex]\[ n \approx \frac{{20.02498438 - 1}}{2} \approx \frac{{19.02498438}}{2} \approx 9.51249219 \][/tex]
However, since the number of terms [tex]\(n\)[/tex] must be an integer, we consider the nearest integers to check which satisfies the sum exactly. Based on checking:
- If [tex]\(n = 9\)[/tex], then the sum [tex]\(S_9\)[/tex] is:
[tex]\[ S_9 = 9(9 + 1) = 90 \quad (\text{not equal to } 100) \][/tex]
- If [tex]\(n = 10\)[/tex], then the sum [tex]\(S_{10}\)[/tex] is:
[tex]\[ S_{10} = 10(10 + 1) = 110 \quad (\text{exceeds } 100) \][/tex]
The exact scenario leads us to realize the possible error in integer consideration. Nevertheless mathematically closest solution intermediate as:
The solutions derived are:
\[
n = \frac{{-1 + \sqrt{401}}}{2} \approx 9.51249219 \text{ yet leading around 9~10}
coersively best rationalised solution nearer the accurate is inline 10 for functionnato per integeric utilization.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.