For all your questions, big or small, IDNLearn.com has the answers you need. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
To solve the equation
[tex]\[ \log_2(x - \sqrt{2}) + \log_2(x + \sqrt{2}) - \log_2(x - 1) = 1, \][/tex]
we can proceed with the following steps:
1. Combine the logarithmic terms using the properties of logarithms:
[tex]\[ \log_2(x - \sqrt{2}) + \log_2(x + \sqrt{2}) = \log_2\big((x - \sqrt{2})(x + \sqrt{2})\big). \][/tex]
The product inside the log becomes:
[tex]\[ (x - \sqrt{2})(x + \sqrt{2}) = x^2 - (\sqrt{2})^2 = x^2 - 2. \][/tex]
Thus, we can rewrite the left-hand side of the equation as:
[tex]\[ \log_2(x^2 - 2) - \log_2(x - 1). \][/tex]
2. Apply the property of logarithms that states [tex]\(\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)\)[/tex]:
[tex]\[ \log_2\left(\frac{x^2 - 2}{x - 1}\right). \][/tex]
The equation now becomes:
[tex]\[ \log_2\left(\frac{x^2 - 2}{x - 1}\right) = 1. \][/tex]
3. Rewrite the logarithmic equation in exponential form to remove the logarithm:
[tex]\[ \frac{x^2 - 2}{x - 1} = 2^1. \][/tex]
Simplify this to:
[tex]\[ \frac{x^2 - 2}{x - 1} = 2. \][/tex]
4. Solve the resulting rational equation:
[tex]\[ x^2 - 2 = 2(x - 1). \][/tex]
Distribute and rearrange the terms:
[tex]\[ x^2 - 2 = 2x - 2. \][/tex]
[tex]\[ x^2 - 2x = 0. \][/tex]
[tex]\[ x(x - 2) = 0. \][/tex]
5. Find the solutions by solving for [tex]\(x\)[/tex]:
[tex]\[ x = 0 \quad \text{or} \quad x = 2. \][/tex]
6. Check for extraneous solutions by substituting the solutions back into the original equation to ensure they do not violate any constraints (i.e., the arguments of the logarithms must be positive):
- For [tex]\(x = 0\)[/tex]:
[tex]\[ \log_2(0 - \sqrt{2}) \quad (\text{undefined, because } 0 - \sqrt{2} \text{ is negative}). \][/tex]
- Hence, discard [tex]\(x = 0\)[/tex] as it is not valid.
- For [tex]\(x = 2\)[/tex]:
Check the original equation:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) - \log_2(2 - 1). \][/tex]
This simplifies to:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) - \log_2(1). \][/tex]
Since [tex]\(\log_2(1) = 0\)[/tex], we get:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) = 1. \][/tex]
Let’s check this calculation and ensure it satisfies the given equation.
7. Verify [tex]\(x = 2\)[/tex] satisfies the equation:
- [tex]\((2 - \sqrt{2}) > 0\)[/tex], [tex]\((2 + \sqrt{2}) > 0\)[/tex], [tex]\((2 - 1) = 1\)[/tex] (all are positive).
- Thus, [tex]\(\boxed{2}\)[/tex] is indeed a valid solution.
Therefore, the solution to the equation is [tex]\( \boxed{2} \)[/tex].
[tex]\[ \log_2(x - \sqrt{2}) + \log_2(x + \sqrt{2}) - \log_2(x - 1) = 1, \][/tex]
we can proceed with the following steps:
1. Combine the logarithmic terms using the properties of logarithms:
[tex]\[ \log_2(x - \sqrt{2}) + \log_2(x + \sqrt{2}) = \log_2\big((x - \sqrt{2})(x + \sqrt{2})\big). \][/tex]
The product inside the log becomes:
[tex]\[ (x - \sqrt{2})(x + \sqrt{2}) = x^2 - (\sqrt{2})^2 = x^2 - 2. \][/tex]
Thus, we can rewrite the left-hand side of the equation as:
[tex]\[ \log_2(x^2 - 2) - \log_2(x - 1). \][/tex]
2. Apply the property of logarithms that states [tex]\(\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)\)[/tex]:
[tex]\[ \log_2\left(\frac{x^2 - 2}{x - 1}\right). \][/tex]
The equation now becomes:
[tex]\[ \log_2\left(\frac{x^2 - 2}{x - 1}\right) = 1. \][/tex]
3. Rewrite the logarithmic equation in exponential form to remove the logarithm:
[tex]\[ \frac{x^2 - 2}{x - 1} = 2^1. \][/tex]
Simplify this to:
[tex]\[ \frac{x^2 - 2}{x - 1} = 2. \][/tex]
4. Solve the resulting rational equation:
[tex]\[ x^2 - 2 = 2(x - 1). \][/tex]
Distribute and rearrange the terms:
[tex]\[ x^2 - 2 = 2x - 2. \][/tex]
[tex]\[ x^2 - 2x = 0. \][/tex]
[tex]\[ x(x - 2) = 0. \][/tex]
5. Find the solutions by solving for [tex]\(x\)[/tex]:
[tex]\[ x = 0 \quad \text{or} \quad x = 2. \][/tex]
6. Check for extraneous solutions by substituting the solutions back into the original equation to ensure they do not violate any constraints (i.e., the arguments of the logarithms must be positive):
- For [tex]\(x = 0\)[/tex]:
[tex]\[ \log_2(0 - \sqrt{2}) \quad (\text{undefined, because } 0 - \sqrt{2} \text{ is negative}). \][/tex]
- Hence, discard [tex]\(x = 0\)[/tex] as it is not valid.
- For [tex]\(x = 2\)[/tex]:
Check the original equation:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) - \log_2(2 - 1). \][/tex]
This simplifies to:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) - \log_2(1). \][/tex]
Since [tex]\(\log_2(1) = 0\)[/tex], we get:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) = 1. \][/tex]
Let’s check this calculation and ensure it satisfies the given equation.
7. Verify [tex]\(x = 2\)[/tex] satisfies the equation:
- [tex]\((2 - \sqrt{2}) > 0\)[/tex], [tex]\((2 + \sqrt{2}) > 0\)[/tex], [tex]\((2 - 1) = 1\)[/tex] (all are positive).
- Thus, [tex]\(\boxed{2}\)[/tex] is indeed a valid solution.
Therefore, the solution to the equation is [tex]\( \boxed{2} \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.