IDNLearn.com offers a unique blend of expert answers and community-driven knowledge. Get prompt and accurate answers to your questions from our community of knowledgeable experts.
Sagot :
To solve the equation
[tex]\[ \log_2(x - \sqrt{2}) + \log_2(x + \sqrt{2}) - \log_2(x - 1) = 1, \][/tex]
we can proceed with the following steps:
1. Combine the logarithmic terms using the properties of logarithms:
[tex]\[ \log_2(x - \sqrt{2}) + \log_2(x + \sqrt{2}) = \log_2\big((x - \sqrt{2})(x + \sqrt{2})\big). \][/tex]
The product inside the log becomes:
[tex]\[ (x - \sqrt{2})(x + \sqrt{2}) = x^2 - (\sqrt{2})^2 = x^2 - 2. \][/tex]
Thus, we can rewrite the left-hand side of the equation as:
[tex]\[ \log_2(x^2 - 2) - \log_2(x - 1). \][/tex]
2. Apply the property of logarithms that states [tex]\(\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)\)[/tex]:
[tex]\[ \log_2\left(\frac{x^2 - 2}{x - 1}\right). \][/tex]
The equation now becomes:
[tex]\[ \log_2\left(\frac{x^2 - 2}{x - 1}\right) = 1. \][/tex]
3. Rewrite the logarithmic equation in exponential form to remove the logarithm:
[tex]\[ \frac{x^2 - 2}{x - 1} = 2^1. \][/tex]
Simplify this to:
[tex]\[ \frac{x^2 - 2}{x - 1} = 2. \][/tex]
4. Solve the resulting rational equation:
[tex]\[ x^2 - 2 = 2(x - 1). \][/tex]
Distribute and rearrange the terms:
[tex]\[ x^2 - 2 = 2x - 2. \][/tex]
[tex]\[ x^2 - 2x = 0. \][/tex]
[tex]\[ x(x - 2) = 0. \][/tex]
5. Find the solutions by solving for [tex]\(x\)[/tex]:
[tex]\[ x = 0 \quad \text{or} \quad x = 2. \][/tex]
6. Check for extraneous solutions by substituting the solutions back into the original equation to ensure they do not violate any constraints (i.e., the arguments of the logarithms must be positive):
- For [tex]\(x = 0\)[/tex]:
[tex]\[ \log_2(0 - \sqrt{2}) \quad (\text{undefined, because } 0 - \sqrt{2} \text{ is negative}). \][/tex]
- Hence, discard [tex]\(x = 0\)[/tex] as it is not valid.
- For [tex]\(x = 2\)[/tex]:
Check the original equation:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) - \log_2(2 - 1). \][/tex]
This simplifies to:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) - \log_2(1). \][/tex]
Since [tex]\(\log_2(1) = 0\)[/tex], we get:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) = 1. \][/tex]
Let’s check this calculation and ensure it satisfies the given equation.
7. Verify [tex]\(x = 2\)[/tex] satisfies the equation:
- [tex]\((2 - \sqrt{2}) > 0\)[/tex], [tex]\((2 + \sqrt{2}) > 0\)[/tex], [tex]\((2 - 1) = 1\)[/tex] (all are positive).
- Thus, [tex]\(\boxed{2}\)[/tex] is indeed a valid solution.
Therefore, the solution to the equation is [tex]\( \boxed{2} \)[/tex].
[tex]\[ \log_2(x - \sqrt{2}) + \log_2(x + \sqrt{2}) - \log_2(x - 1) = 1, \][/tex]
we can proceed with the following steps:
1. Combine the logarithmic terms using the properties of logarithms:
[tex]\[ \log_2(x - \sqrt{2}) + \log_2(x + \sqrt{2}) = \log_2\big((x - \sqrt{2})(x + \sqrt{2})\big). \][/tex]
The product inside the log becomes:
[tex]\[ (x - \sqrt{2})(x + \sqrt{2}) = x^2 - (\sqrt{2})^2 = x^2 - 2. \][/tex]
Thus, we can rewrite the left-hand side of the equation as:
[tex]\[ \log_2(x^2 - 2) - \log_2(x - 1). \][/tex]
2. Apply the property of logarithms that states [tex]\(\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)\)[/tex]:
[tex]\[ \log_2\left(\frac{x^2 - 2}{x - 1}\right). \][/tex]
The equation now becomes:
[tex]\[ \log_2\left(\frac{x^2 - 2}{x - 1}\right) = 1. \][/tex]
3. Rewrite the logarithmic equation in exponential form to remove the logarithm:
[tex]\[ \frac{x^2 - 2}{x - 1} = 2^1. \][/tex]
Simplify this to:
[tex]\[ \frac{x^2 - 2}{x - 1} = 2. \][/tex]
4. Solve the resulting rational equation:
[tex]\[ x^2 - 2 = 2(x - 1). \][/tex]
Distribute and rearrange the terms:
[tex]\[ x^2 - 2 = 2x - 2. \][/tex]
[tex]\[ x^2 - 2x = 0. \][/tex]
[tex]\[ x(x - 2) = 0. \][/tex]
5. Find the solutions by solving for [tex]\(x\)[/tex]:
[tex]\[ x = 0 \quad \text{or} \quad x = 2. \][/tex]
6. Check for extraneous solutions by substituting the solutions back into the original equation to ensure they do not violate any constraints (i.e., the arguments of the logarithms must be positive):
- For [tex]\(x = 0\)[/tex]:
[tex]\[ \log_2(0 - \sqrt{2}) \quad (\text{undefined, because } 0 - \sqrt{2} \text{ is negative}). \][/tex]
- Hence, discard [tex]\(x = 0\)[/tex] as it is not valid.
- For [tex]\(x = 2\)[/tex]:
Check the original equation:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) - \log_2(2 - 1). \][/tex]
This simplifies to:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) - \log_2(1). \][/tex]
Since [tex]\(\log_2(1) = 0\)[/tex], we get:
[tex]\[ \log_2(2 - \sqrt{2}) + \log_2(2 + \sqrt{2}) = 1. \][/tex]
Let’s check this calculation and ensure it satisfies the given equation.
7. Verify [tex]\(x = 2\)[/tex] satisfies the equation:
- [tex]\((2 - \sqrt{2}) > 0\)[/tex], [tex]\((2 + \sqrt{2}) > 0\)[/tex], [tex]\((2 - 1) = 1\)[/tex] (all are positive).
- Thus, [tex]\(\boxed{2}\)[/tex] is indeed a valid solution.
Therefore, the solution to the equation is [tex]\( \boxed{2} \)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.