IDNLearn.com provides a user-friendly platform for finding answers to your questions. Whether your question is simple or complex, our community is here to provide detailed and trustworthy answers quickly and effectively.

Consider the following geometric series:
[tex]\[ 4\left(\frac{1-k}{5}\right) + 8\left(\frac{1-k}{5}\right)^2 + 16\left(\frac{1-k}{5}\right)^3 \ldots \][/tex]

Determine the values of [tex]\( k \)[/tex].


Sagot :

To determine the values of [tex]\( k \)[/tex] for which the given geometric series converges, we need to analyze the series step-by-step.

The given series is:
[tex]\[ 4 \left( \frac{1-k}{5} \right) + 8 \left( \frac{1-k}{5} \right)^2 + 16 \left( \frac{1-k}{5} \right)^3 + \ldots \][/tex]

First, we need to identify the first term ([tex]\(a\)[/tex]) and the common ratio ([tex]\(r\)[/tex]) of the geometric series.

1. Identify the first term [tex]\(a\)[/tex]:
The first term [tex]\(a\)[/tex] in the series is:
[tex]\[ a = 4 \left( \frac{1-k}{5} \right) \][/tex]

2. Identify the common ratio [tex]\(r\)[/tex]:
To find the common ratio [tex]\(r\)[/tex], observe the ratio between successive terms:
[tex]\[ r = \frac{\text{second term}}{\text{first term}} = \frac{8 \left( \frac{1-k}{5} \right)^2}{4 \left( \frac{1-k}{5} \right)} = \frac{8 \left( \frac{1-k}{5} \right)^2}{4 \left( \frac{1-k}{5} \right)} = 2 \left( \frac{1-k}{5} \right) \][/tex]

Since in a geometric series, all terms are scaled by the common ratio [tex]\(r\)[/tex]:
[tex]\[ r = \frac{1-k}{5} \][/tex]

3. Convergence of the Geometric Series:
A geometric series converges if the absolute value of the common ratio [tex]\(r\)[/tex] is less than 1:
[tex]\[ |r| < 1 \][/tex]
Hence, we need to solve:
[tex]\[ \left| \frac{1-k}{5} \right| < 1 \][/tex]

4. Solving the inequality:
[tex]\[ \left| \frac{1-k}{5} \right| < 1 \][/tex]
This absolute value inequality can be broken down into two separate inequalities:
[tex]\[ -1 < \frac{1-k}{5} < 1 \][/tex]

Multiply all parts of the inequality by 5:
[tex]\[ -5 < 1 - k < 5 \][/tex]

Now, solve for [tex]\(k\)[/tex]:
[tex]\[ -5 < 1 - k \quad \text{and} \quad 1 - k < 5 \][/tex]

For the left part, add [tex]\(k\)[/tex] and 5 to both sides:
[tex]\[ -5 + k + 5 < 1 - k + k + 5 \][/tex]
Simplifies to:
[tex]\[ k < 6 \][/tex]

For the right part, subtract 1 from both sides:
[tex]\[ 1 - k - 1 < 5 - 1 \][/tex]
Simplifies to:
[tex]\[ -k < 4 \][/tex]
Multiply by -1 (which reverses the inequality):
[tex]\[ k > -4 \][/tex]

Thus, combining both parts, the values of [tex]\(k\)[/tex] for which the series converges are:
[tex]\[ -4 < k < 6 \][/tex]

Therefore, [tex]\(k\)[/tex] must satisfy the inequality:
[tex]\[ -4 < k < 6 \][/tex]
This is the range of values for [tex]\(k\)[/tex] that ensure the convergence of the given geometric series.