Expand your knowledge base with the help of IDNLearn.com's extensive answer archive. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
Alright, let's delve into and prove the identities provided.
### Identity 1: [tex]\((\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta )^2 = 2\)[/tex]
First, let's expand both terms individually.
#### Expanding [tex]\((\cos \theta + \sin \theta)^2\)[/tex]
[tex]\[ (\cos \theta + \sin \theta)^2 = \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta \][/tex]
#### Expanding [tex]\((\cos \theta - \sin \theta)^2\)[/tex]
[tex]\[ (\cos \theta - \sin \theta)^2 = \cos^2 \theta - 2 \cos \theta \sin \theta + \sin^2 \theta \][/tex]
#### Adding the expanded forms together:
[tex]\[ (\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta)^2 = (\cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta) + (\cos^2 \theta - 2 \cos \theta \sin \theta + \sin^2 \theta) \][/tex]
Combine the terms:
[tex]\[ = \cos^2 \theta + \sin^2 \theta + \cos^2 \theta + \sin^2 \theta \][/tex]
Simplify:
[tex]\[ = 2 \cos^2 \theta + 2 \sin^2 \theta \][/tex]
Using the Pythagorean identity:
[tex]\[ \cos^2 \theta + \sin^2 \theta = 1 \][/tex]
So we have:
[tex]\[ 2(\cos^2 \theta + \sin^2 \theta) = 2 \cdot 1 = 2 \][/tex]
Thus, the first identity is proven:
[tex]\[ (\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta )^2 = 2 \][/tex]
### Identity 2: [tex]\(\frac{\cos \theta}{1+\sin \theta} = \sec \theta - \tan \theta\)[/tex]
First, let's express the right-hand side in terms of cosine and sine functions.
[tex]\[ \sec \theta = \frac{1}{\cos \theta} \quad \text{and} \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
So,
[tex]\[ \sec \theta - \tan \theta = \frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta} \][/tex]
Combine the fractions:
[tex]\[ = \frac{1 - \sin \theta}{\cos \theta} \][/tex]
Now, let's focus on the left-hand side:
[tex]\[ \frac{\cos \theta}{1 + \sin \theta} \][/tex]
To simplify this to match the right-hand side, we can use an algebraic trick by multiplying the numerator and the denominator by the conjugate of the denominator:
[tex]\[ \frac{\cos \theta}{1 + \sin \theta} \cdot \frac{1 - \sin \theta}{1 - \sin \theta} \][/tex]
This simplifies to:
[tex]\[ = \frac{\cos \theta (1 - \sin \theta)}{(1 + \sin \theta) (1 - \sin \theta)} \][/tex]
Using the difference of squares:
[tex]\[ (1 + \sin \theta)(1 - \sin \theta) = 1 - \sin^2 \theta \][/tex]
Since [tex]\(1 - \sin^2 \theta = \cos^2 \theta\)[/tex], we get:
[tex]\[ = \frac{\cos \theta (1 - \sin \theta)}{\cos^2 \theta} \][/tex]
Simplify the fraction:
[tex]\[ = \frac{1 - \sin \theta}{\cos \theta} \][/tex]
We can see this matches the right-hand side:
[tex]\[ = \sec \theta - \tan \theta \][/tex]
Thus, the second identity is proven:
[tex]\[ \frac{\cos \theta}{1 + \sin \theta} = \sec \theta - \tan \theta \][/tex]
In conclusion, we've proven both identities:
1. [tex]\((\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta )^2 = 2\)[/tex]
2. [tex]\(\frac{\cos \theta}{1+\sin \theta} = \sec \theta - \tan \theta\)[/tex]
### Identity 1: [tex]\((\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta )^2 = 2\)[/tex]
First, let's expand both terms individually.
#### Expanding [tex]\((\cos \theta + \sin \theta)^2\)[/tex]
[tex]\[ (\cos \theta + \sin \theta)^2 = \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta \][/tex]
#### Expanding [tex]\((\cos \theta - \sin \theta)^2\)[/tex]
[tex]\[ (\cos \theta - \sin \theta)^2 = \cos^2 \theta - 2 \cos \theta \sin \theta + \sin^2 \theta \][/tex]
#### Adding the expanded forms together:
[tex]\[ (\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta)^2 = (\cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta) + (\cos^2 \theta - 2 \cos \theta \sin \theta + \sin^2 \theta) \][/tex]
Combine the terms:
[tex]\[ = \cos^2 \theta + \sin^2 \theta + \cos^2 \theta + \sin^2 \theta \][/tex]
Simplify:
[tex]\[ = 2 \cos^2 \theta + 2 \sin^2 \theta \][/tex]
Using the Pythagorean identity:
[tex]\[ \cos^2 \theta + \sin^2 \theta = 1 \][/tex]
So we have:
[tex]\[ 2(\cos^2 \theta + \sin^2 \theta) = 2 \cdot 1 = 2 \][/tex]
Thus, the first identity is proven:
[tex]\[ (\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta )^2 = 2 \][/tex]
### Identity 2: [tex]\(\frac{\cos \theta}{1+\sin \theta} = \sec \theta - \tan \theta\)[/tex]
First, let's express the right-hand side in terms of cosine and sine functions.
[tex]\[ \sec \theta = \frac{1}{\cos \theta} \quad \text{and} \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
So,
[tex]\[ \sec \theta - \tan \theta = \frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta} \][/tex]
Combine the fractions:
[tex]\[ = \frac{1 - \sin \theta}{\cos \theta} \][/tex]
Now, let's focus on the left-hand side:
[tex]\[ \frac{\cos \theta}{1 + \sin \theta} \][/tex]
To simplify this to match the right-hand side, we can use an algebraic trick by multiplying the numerator and the denominator by the conjugate of the denominator:
[tex]\[ \frac{\cos \theta}{1 + \sin \theta} \cdot \frac{1 - \sin \theta}{1 - \sin \theta} \][/tex]
This simplifies to:
[tex]\[ = \frac{\cos \theta (1 - \sin \theta)}{(1 + \sin \theta) (1 - \sin \theta)} \][/tex]
Using the difference of squares:
[tex]\[ (1 + \sin \theta)(1 - \sin \theta) = 1 - \sin^2 \theta \][/tex]
Since [tex]\(1 - \sin^2 \theta = \cos^2 \theta\)[/tex], we get:
[tex]\[ = \frac{\cos \theta (1 - \sin \theta)}{\cos^2 \theta} \][/tex]
Simplify the fraction:
[tex]\[ = \frac{1 - \sin \theta}{\cos \theta} \][/tex]
We can see this matches the right-hand side:
[tex]\[ = \sec \theta - \tan \theta \][/tex]
Thus, the second identity is proven:
[tex]\[ \frac{\cos \theta}{1 + \sin \theta} = \sec \theta - \tan \theta \][/tex]
In conclusion, we've proven both identities:
1. [tex]\((\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta )^2 = 2\)[/tex]
2. [tex]\(\frac{\cos \theta}{1+\sin \theta} = \sec \theta - \tan \theta\)[/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.