Connect with a global community of experts on IDNLearn.com. Ask any question and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
### Problem 5: Find the equation of the line parallel to the line [tex]\(3x + 4y = 8\)[/tex] and at a distance of 5 units from the origin.
To solve this problem, follow these steps:
1. Identify the coefficients of the given line:
The given line [tex]\(3x + 4y = 8\)[/tex] can be written in the general form [tex]\(Ax + By = C\)[/tex], where [tex]\(A = 3\)[/tex], [tex]\(B = 4\)[/tex], and [tex]\(C = 8\)[/tex].
2. Form of the parallel line:
Any line parallel to [tex]\(3x + 4y = 8\)[/tex] will have the same coefficients for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Therefore, the general form of the lines parallel to [tex]\(3x + 4y = 8\)[/tex] will be [tex]\(3x + 4y = C\)[/tex], where [tex]\(C\)[/tex] is some constant.
3. Distance from the origin:
The formula for the distance [tex]\(p\)[/tex] from a point (in this case, the origin [tex]\((0, 0)\)[/tex]) to a line [tex]\(Ax + By + C = 0\)[/tex] is given by:
[tex]\[ p = \frac{|C|}{\sqrt{A^2 + B^2}} \][/tex]
Here, [tex]\(A = 3\)[/tex], [tex]\(B = 4\)[/tex], and the distance [tex]\(p = 5\)[/tex].
4. Calculate the constant [tex]\(C\)[/tex]:
Using the distance formula:
[tex]\[ 5 = \frac{|C|}{\sqrt{3^2 + 4^2}} = \frac{|C|}{\sqrt{9 + 16}} = \frac{|C|}{\sqrt{25}} = \frac{|C|}{5} \][/tex]
Solving for [tex]\(C\)[/tex]:
[tex]\[ |C| = 5 \times 5 = 25 \][/tex]
Thus, [tex]\(C\)[/tex] can be either [tex]\(25\)[/tex] or [tex]\(-25\)[/tex].
5. Form the equations:
Therefore, the two possible equations of the lines parallel to [tex]\(3x + 4y = 8\)[/tex] and at a distance of 5 units from the origin are:
[tex]\[ \boxed{3x + 4y = 25 \quad \text{and} \quad 3x + 4y = -25} \][/tex]
---
### Problem 6: If [tex]\(p\)[/tex] is the length of the perpendicular dropped from the origin on the line [tex]\(\frac{x}{a} + \frac{y}{b} = 1\)[/tex], prove that [tex]\(\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}\)[/tex].
To prove this, follow these steps:
1. Standard form of the line equation:
Convert [tex]\(\frac{x}{a} + \frac{y}{b} = 1\)[/tex] into the standard form [tex]\(Ax + By = C\)[/tex].
Multiply through by [tex]\(ab\)[/tex]:
[tex]\[ bx + ay = ab \][/tex]
So, the line equation in standard form is:
[tex]\[ bx + ay = ab \][/tex]
Here, [tex]\(A = b\)[/tex], [tex]\(B = a\)[/tex], and [tex]\(C = ab\)[/tex].
2. Formula for perpendicular distance:
The perpendicular distance [tex]\(p\)[/tex] from the origin [tex]\((0, 0)\)[/tex] to the line [tex]\(Ax + By = C\)[/tex] is given by:
[tex]\[ p = \frac{|C|}{\sqrt{A^2 + B^2}} \][/tex]
Plug in [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
[tex]\[ p = \frac{|ab|}{\sqrt{b^2 + a^2}} \][/tex]
Since [tex]\(ab\)[/tex] is positive:
[tex]\[ p = \frac{ab}{\sqrt{b^2 + a^2}} \][/tex]
3. Square both sides:
[tex]\[ p^2 = \left(\frac{ab}{\sqrt{b^2 + a^2}}\right)^2 = \frac{(ab)^2}{b^2 + a^2} \][/tex]
Simplify:
[tex]\[ p^2 = \frac{a^2b^2}{a^2 + b^2} \][/tex]
4. Rearrange to prove the desired identity:
[tex]\[ \frac{1}{p^2} = \frac{a^2 + b^2}{a^2b^2} \][/tex]
[tex]\[ \frac{1}{p^2} = \frac{a^2}{a^2b^2} + \frac{b^2}{a^2b^2} \][/tex]
[tex]\[ \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{a^2} \][/tex]
Rewriting, we obtain:
[tex]\[ \boxed{\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}} \][/tex]
To solve this problem, follow these steps:
1. Identify the coefficients of the given line:
The given line [tex]\(3x + 4y = 8\)[/tex] can be written in the general form [tex]\(Ax + By = C\)[/tex], where [tex]\(A = 3\)[/tex], [tex]\(B = 4\)[/tex], and [tex]\(C = 8\)[/tex].
2. Form of the parallel line:
Any line parallel to [tex]\(3x + 4y = 8\)[/tex] will have the same coefficients for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Therefore, the general form of the lines parallel to [tex]\(3x + 4y = 8\)[/tex] will be [tex]\(3x + 4y = C\)[/tex], where [tex]\(C\)[/tex] is some constant.
3. Distance from the origin:
The formula for the distance [tex]\(p\)[/tex] from a point (in this case, the origin [tex]\((0, 0)\)[/tex]) to a line [tex]\(Ax + By + C = 0\)[/tex] is given by:
[tex]\[ p = \frac{|C|}{\sqrt{A^2 + B^2}} \][/tex]
Here, [tex]\(A = 3\)[/tex], [tex]\(B = 4\)[/tex], and the distance [tex]\(p = 5\)[/tex].
4. Calculate the constant [tex]\(C\)[/tex]:
Using the distance formula:
[tex]\[ 5 = \frac{|C|}{\sqrt{3^2 + 4^2}} = \frac{|C|}{\sqrt{9 + 16}} = \frac{|C|}{\sqrt{25}} = \frac{|C|}{5} \][/tex]
Solving for [tex]\(C\)[/tex]:
[tex]\[ |C| = 5 \times 5 = 25 \][/tex]
Thus, [tex]\(C\)[/tex] can be either [tex]\(25\)[/tex] or [tex]\(-25\)[/tex].
5. Form the equations:
Therefore, the two possible equations of the lines parallel to [tex]\(3x + 4y = 8\)[/tex] and at a distance of 5 units from the origin are:
[tex]\[ \boxed{3x + 4y = 25 \quad \text{and} \quad 3x + 4y = -25} \][/tex]
---
### Problem 6: If [tex]\(p\)[/tex] is the length of the perpendicular dropped from the origin on the line [tex]\(\frac{x}{a} + \frac{y}{b} = 1\)[/tex], prove that [tex]\(\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}\)[/tex].
To prove this, follow these steps:
1. Standard form of the line equation:
Convert [tex]\(\frac{x}{a} + \frac{y}{b} = 1\)[/tex] into the standard form [tex]\(Ax + By = C\)[/tex].
Multiply through by [tex]\(ab\)[/tex]:
[tex]\[ bx + ay = ab \][/tex]
So, the line equation in standard form is:
[tex]\[ bx + ay = ab \][/tex]
Here, [tex]\(A = b\)[/tex], [tex]\(B = a\)[/tex], and [tex]\(C = ab\)[/tex].
2. Formula for perpendicular distance:
The perpendicular distance [tex]\(p\)[/tex] from the origin [tex]\((0, 0)\)[/tex] to the line [tex]\(Ax + By = C\)[/tex] is given by:
[tex]\[ p = \frac{|C|}{\sqrt{A^2 + B^2}} \][/tex]
Plug in [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
[tex]\[ p = \frac{|ab|}{\sqrt{b^2 + a^2}} \][/tex]
Since [tex]\(ab\)[/tex] is positive:
[tex]\[ p = \frac{ab}{\sqrt{b^2 + a^2}} \][/tex]
3. Square both sides:
[tex]\[ p^2 = \left(\frac{ab}{\sqrt{b^2 + a^2}}\right)^2 = \frac{(ab)^2}{b^2 + a^2} \][/tex]
Simplify:
[tex]\[ p^2 = \frac{a^2b^2}{a^2 + b^2} \][/tex]
4. Rearrange to prove the desired identity:
[tex]\[ \frac{1}{p^2} = \frac{a^2 + b^2}{a^2b^2} \][/tex]
[tex]\[ \frac{1}{p^2} = \frac{a^2}{a^2b^2} + \frac{b^2}{a^2b^2} \][/tex]
[tex]\[ \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{a^2} \][/tex]
Rewriting, we obtain:
[tex]\[ \boxed{\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.