IDNLearn.com: Your trusted platform for finding reliable answers. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.
Sagot :
Let's approach this problem step-by-step.
### Part (a): Finding [tex]\(\alpha^2 + \beta^2\)[/tex] in terms of [tex]\(k\)[/tex]
For the quadratic equation [tex]\(f(x) = x^2 + (k-3)x + 4 = 0\)[/tex], the roots are [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
Using Vieta's formulas:
- The sum of the roots [tex]\(\alpha + \beta = -(k-3)\)[/tex]
- The product of the roots [tex]\(\alpha \beta = 4\)[/tex]
We want to find [tex]\(\alpha^2 + \beta^2\)[/tex]. Using the identity:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substitute the known values:
[tex]\[ \alpha + \beta = -(k-3) \implies (\alpha + \beta)^2 = (-(k-3))^2 = (k-3)^2 \][/tex]
[tex]\[ \alpha \beta = 4 \][/tex]
So,
[tex]\[ \alpha^2 + \beta^2 = (k-3)^2 - 2 \cdot 4 = (k-3)^2 - 8 \][/tex]
### Part (b): Forming a quadratic equation with roots [tex]\(\frac{1}{\alpha^2}\)[/tex] and [tex]\(\frac{1}{\beta^2}\)[/tex]
Given [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex] are the roots of the original equation, we need to form a quadratic equation whose roots are [tex]\(\frac{1}{\alpha^2}\)[/tex] and [tex]\(\frac{1}{\beta^2}\)[/tex].
First, consider the sum and product of the new roots:
- Sum of the new roots: [tex]\(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\)[/tex]
- Product of the new roots: [tex]\(\frac{1}{\alpha^2} \cdot \frac{1}{\beta^2}\)[/tex]
The product of the new roots is straightforward:
[tex]\[ \frac{1}{\alpha^2} \cdot \frac{1}{\beta^2} = \frac{1}{\alpha^2 \beta^2} = \frac{1}{(4)^2} = \frac{1}{16} \][/tex]
For the sum of the new roots, use:
[tex]\[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\alpha^2 + \beta^2}{(4)^2} = \frac{\alpha^2 + \beta^2}{16} \][/tex]
From part (a), we have:
[tex]\[ \alpha^2 + \beta^2 = (k-3)^2 - 8 \][/tex]
Therefore,
[tex]\[ \sum = \frac{(k-3)^2 - 8}{16} \][/tex]
The quadratic equation with roots [tex]\(\frac{1}{\alpha^2}\)[/tex] and [tex]\(\frac{1}{\beta^2}\)[/tex] is:
[tex]\[ x^2 - \left(\frac{(k-3)^2 - 8}{16}\right)x + \frac{1}{16} = 0 \][/tex]
Multiply through by 16 to get integer coefficients:
[tex]\[ 16x^2 - ((k-3)^2 - 8)x + 1 = 0 \][/tex]
### Part (c): Finding the possible values of [tex]\(k\)[/tex]
Given the condition:
[tex]\[ 4(\alpha^2 + \beta^2) = 7(\alpha \beta)^2 \][/tex]
We substitute the known values:
[tex]\[ 4((k-3)^2 - 8) = 7 \cdot 4^2 \][/tex]
[tex]\[ 4((k-3)^2 - 8) = 7 \cdot 16 \][/tex]
[tex]\[ 4(k-3)^2 - 32 = 112 \][/tex]
[tex]\[ 4(k-3)^2 = 144 \][/tex]
[tex]\[ (k-3)^2 = 36 \][/tex]
[tex]\[ k-3 = \pm 6 \][/tex]
[tex]\[ k = 3 + 6 \quad \text{or} \quad k = 3 - 6 \][/tex]
[tex]\[ k = 9 \quad \text{or} \quad k = -3 \][/tex]
Thus, the possible values of [tex]\(k\)[/tex] are [tex]\(9\)[/tex] and [tex]\(-3\)[/tex].
### Part (a): Finding [tex]\(\alpha^2 + \beta^2\)[/tex] in terms of [tex]\(k\)[/tex]
For the quadratic equation [tex]\(f(x) = x^2 + (k-3)x + 4 = 0\)[/tex], the roots are [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex].
Using Vieta's formulas:
- The sum of the roots [tex]\(\alpha + \beta = -(k-3)\)[/tex]
- The product of the roots [tex]\(\alpha \beta = 4\)[/tex]
We want to find [tex]\(\alpha^2 + \beta^2\)[/tex]. Using the identity:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substitute the known values:
[tex]\[ \alpha + \beta = -(k-3) \implies (\alpha + \beta)^2 = (-(k-3))^2 = (k-3)^2 \][/tex]
[tex]\[ \alpha \beta = 4 \][/tex]
So,
[tex]\[ \alpha^2 + \beta^2 = (k-3)^2 - 2 \cdot 4 = (k-3)^2 - 8 \][/tex]
### Part (b): Forming a quadratic equation with roots [tex]\(\frac{1}{\alpha^2}\)[/tex] and [tex]\(\frac{1}{\beta^2}\)[/tex]
Given [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex] are the roots of the original equation, we need to form a quadratic equation whose roots are [tex]\(\frac{1}{\alpha^2}\)[/tex] and [tex]\(\frac{1}{\beta^2}\)[/tex].
First, consider the sum and product of the new roots:
- Sum of the new roots: [tex]\(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\)[/tex]
- Product of the new roots: [tex]\(\frac{1}{\alpha^2} \cdot \frac{1}{\beta^2}\)[/tex]
The product of the new roots is straightforward:
[tex]\[ \frac{1}{\alpha^2} \cdot \frac{1}{\beta^2} = \frac{1}{\alpha^2 \beta^2} = \frac{1}{(4)^2} = \frac{1}{16} \][/tex]
For the sum of the new roots, use:
[tex]\[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\alpha^2 + \beta^2}{(4)^2} = \frac{\alpha^2 + \beta^2}{16} \][/tex]
From part (a), we have:
[tex]\[ \alpha^2 + \beta^2 = (k-3)^2 - 8 \][/tex]
Therefore,
[tex]\[ \sum = \frac{(k-3)^2 - 8}{16} \][/tex]
The quadratic equation with roots [tex]\(\frac{1}{\alpha^2}\)[/tex] and [tex]\(\frac{1}{\beta^2}\)[/tex] is:
[tex]\[ x^2 - \left(\frac{(k-3)^2 - 8}{16}\right)x + \frac{1}{16} = 0 \][/tex]
Multiply through by 16 to get integer coefficients:
[tex]\[ 16x^2 - ((k-3)^2 - 8)x + 1 = 0 \][/tex]
### Part (c): Finding the possible values of [tex]\(k\)[/tex]
Given the condition:
[tex]\[ 4(\alpha^2 + \beta^2) = 7(\alpha \beta)^2 \][/tex]
We substitute the known values:
[tex]\[ 4((k-3)^2 - 8) = 7 \cdot 4^2 \][/tex]
[tex]\[ 4((k-3)^2 - 8) = 7 \cdot 16 \][/tex]
[tex]\[ 4(k-3)^2 - 32 = 112 \][/tex]
[tex]\[ 4(k-3)^2 = 144 \][/tex]
[tex]\[ (k-3)^2 = 36 \][/tex]
[tex]\[ k-3 = \pm 6 \][/tex]
[tex]\[ k = 3 + 6 \quad \text{or} \quad k = 3 - 6 \][/tex]
[tex]\[ k = 9 \quad \text{or} \quad k = -3 \][/tex]
Thus, the possible values of [tex]\(k\)[/tex] are [tex]\(9\)[/tex] and [tex]\(-3\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.