Get detailed and accurate answers to your questions on IDNLearn.com. Our experts provide timely, comprehensive responses to ensure you have the information you need.
Sagot :
To find the derivative of the function [tex]\( y(x) = \cos^2 (\sqrt{1 - x^2}) + \cos (\sqrt{1 - x^2}) \)[/tex], we will apply the chain rule, product rule, and the derivatives of basic functions.
1. Function Definition:
[tex]\[ y(x) = \cos^2 (\sqrt{1 - x^2}) + \cos (\sqrt{1 - x^2}) \][/tex]
2. Chain Rule:
Let's first differentiate [tex]\( \cos (\sqrt{1 - x^2}) \)[/tex]:
[tex]\[ u = \sqrt{1 - x^2} \quad \text{and} \quad v = \cos(u) \][/tex]
The derivative of [tex]\( v \)[/tex] with respect to [tex]\( u \)[/tex] is:
[tex]\[ \frac{dv}{du} = -\sin(u) \][/tex]
The derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} (\sqrt{1 - x^2}) = \frac{1}{2\sqrt{1 - x^2}} \cdot \frac{d}{dx} (1 - x^2) = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = \frac{-x}{\sqrt{1 - x^2}} \][/tex]
Combining these using the chain rule:
[tex]\[ \frac{dv}{dx} = \frac{dv}{du} \cdot \frac{du}{dx} = -\sin(u) \cdot \frac{-x}{\sqrt{1 - x^2}} = \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
3. Differentiating the Entire Function:
Now apply this to the entire function. Let's break it into two parts:
[tex]\( f_1(x) = \cos^2 (\sqrt{1 - x^2}) \)[/tex]
and
[tex]\( f_2(x) = \cos (\sqrt{1 - x^2}) \)[/tex]
- First part [tex]\( f_1(x) = (\cos (\sqrt{1 - x^2}))^2 \)[/tex]:
Use [tex]\(z = \cos (\sqrt{1 - x^2}) \)[/tex] and apply the chain rule:
[tex]\[ \frac{d}{dx} (z^2) = 2z \cdot \frac{dz}{dx} \][/tex]
where
[tex]\[ \frac{dz}{dx} = \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
Therefore,
[tex]\[ \frac{d}{dx} (\cos^2 (\sqrt{1 - x^2})) = 2 \cos (\sqrt{1 - x^2}) \cdot \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
- Second part [tex]\( f_2(x) = \cos (\sqrt{1 - x^2}) \)[/tex]:
We have already differentiated this:
[tex]\[ \frac{d}{dx} (\cos (\sqrt{1 - x^2})) = \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
4. Combine the Derivatives:
Combine the results for [tex]\( f_1(x) \)[/tex] and [tex]\( f_2(x) \)[/tex]:
[tex]\[ \frac{dy}{dx} = 2 \cos (\sqrt{1 - x^2}) \cdot \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} + \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
Simplify further if possible:
[tex]\[ \frac{dy}{dx} = \frac{2 x \cos (\sqrt{1 - x^2}) \sin (\sqrt{1 - x^2})}{\sqrt{1 - x^2}} + \frac{x \sin (\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \left( 2 \cos (\sqrt{1 - x^2}) + 1 \right) \][/tex]
Thus, the derivative of the given function [tex]\( y(x) \)[/tex] is:
[tex]\[ \boxed{\frac{dy}{dx} = \frac{2x \sin(\sqrt{1 - x^2}) \cos(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} + \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}}} \][/tex]
1. Function Definition:
[tex]\[ y(x) = \cos^2 (\sqrt{1 - x^2}) + \cos (\sqrt{1 - x^2}) \][/tex]
2. Chain Rule:
Let's first differentiate [tex]\( \cos (\sqrt{1 - x^2}) \)[/tex]:
[tex]\[ u = \sqrt{1 - x^2} \quad \text{and} \quad v = \cos(u) \][/tex]
The derivative of [tex]\( v \)[/tex] with respect to [tex]\( u \)[/tex] is:
[tex]\[ \frac{dv}{du} = -\sin(u) \][/tex]
The derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} (\sqrt{1 - x^2}) = \frac{1}{2\sqrt{1 - x^2}} \cdot \frac{d}{dx} (1 - x^2) = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = \frac{-x}{\sqrt{1 - x^2}} \][/tex]
Combining these using the chain rule:
[tex]\[ \frac{dv}{dx} = \frac{dv}{du} \cdot \frac{du}{dx} = -\sin(u) \cdot \frac{-x}{\sqrt{1 - x^2}} = \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
3. Differentiating the Entire Function:
Now apply this to the entire function. Let's break it into two parts:
[tex]\( f_1(x) = \cos^2 (\sqrt{1 - x^2}) \)[/tex]
and
[tex]\( f_2(x) = \cos (\sqrt{1 - x^2}) \)[/tex]
- First part [tex]\( f_1(x) = (\cos (\sqrt{1 - x^2}))^2 \)[/tex]:
Use [tex]\(z = \cos (\sqrt{1 - x^2}) \)[/tex] and apply the chain rule:
[tex]\[ \frac{d}{dx} (z^2) = 2z \cdot \frac{dz}{dx} \][/tex]
where
[tex]\[ \frac{dz}{dx} = \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
Therefore,
[tex]\[ \frac{d}{dx} (\cos^2 (\sqrt{1 - x^2})) = 2 \cos (\sqrt{1 - x^2}) \cdot \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
- Second part [tex]\( f_2(x) = \cos (\sqrt{1 - x^2}) \)[/tex]:
We have already differentiated this:
[tex]\[ \frac{d}{dx} (\cos (\sqrt{1 - x^2})) = \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
4. Combine the Derivatives:
Combine the results for [tex]\( f_1(x) \)[/tex] and [tex]\( f_2(x) \)[/tex]:
[tex]\[ \frac{dy}{dx} = 2 \cos (\sqrt{1 - x^2}) \cdot \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} + \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
Simplify further if possible:
[tex]\[ \frac{dy}{dx} = \frac{2 x \cos (\sqrt{1 - x^2}) \sin (\sqrt{1 - x^2})}{\sqrt{1 - x^2}} + \frac{x \sin (\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} \left( 2 \cos (\sqrt{1 - x^2}) + 1 \right) \][/tex]
Thus, the derivative of the given function [tex]\( y(x) \)[/tex] is:
[tex]\[ \boxed{\frac{dy}{dx} = \frac{2x \sin(\sqrt{1 - x^2}) \cos(\sqrt{1 - x^2})}{\sqrt{1 - x^2}} + \frac{x \sin(\sqrt{1 - x^2})}{\sqrt{1 - x^2}}} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.