Explore a diverse range of topics and get expert answers on IDNLearn.com. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Certainly! Let's go through the step-by-step solution to perform the matrix addition and multiplication with the given matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
### Matrix Addition:
First, let's add the corresponding elements of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The sum of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is calculated as follows:
[tex]\[ C_{\text{add}} = A + B = \begin{pmatrix} 1 + 1 & 2 + 3 & 3 + (-2) \\ 4 + 1 & -2 + (-4) & 1 + 2 \\ 0 + 0 & -2 + 1 & 1 + 4 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
So, the result of the matrix addition is:
[tex]\[ C_{\text{add}} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
### Matrix Multiplication:
Next, let's perform the multiplication of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
The product matrix [tex]\( C_{\text{mul}} \)[/tex] is calculated using the dot product of rows of [tex]\( A \)[/tex] with columns of [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The product [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = A \cdot B \][/tex]
Let's calculate each element of the resulting matrix:
[tex]\[ C_{\text{mul}} (1, 1) = 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0 = 1 + 2 + 0 = 3 \][/tex]
[tex]\[ C_{\text{mul}} (1, 2) = 1 \cdot 3 + 2 \cdot -4 + 3 \cdot 1 = 3 - 8 + 3 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (1, 3) = 1 \cdot -2 + 2 \cdot 2 + 3 \cdot 4 = -2 + 4 + 12 = 14 \][/tex]
[tex]\[ C_{\text{mul}} (2, 1) = 4 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 4 - 2 + 0 = 2 \][/tex]
[tex]\[ C_{\text{mul}} (2, 2) = 4 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 12 + 8 + 1 = 21 \][/tex]
[tex]\[ C_{\text{mul}} (2, 3) = 4 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = -8 - 4 + 4 = -8 \][/tex]
[tex]\[ C_{\text{mul}} (3, 1) = 0 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 0 - 2 + 0 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (3, 2) = 0 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 0 + 8 + 1 = 9 \][/tex]
[tex]\[ C_{\text{mul}} (3, 3) = 0 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = 0 - 4 + 4 = 0 \][/tex]
So, the product matrix [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
### Conclusion:
The result of the matrix addition is:
[tex]\[ \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
The result of the matrix multiplication is:
[tex]\[ \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
### Matrix Addition:
First, let's add the corresponding elements of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The sum of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is calculated as follows:
[tex]\[ C_{\text{add}} = A + B = \begin{pmatrix} 1 + 1 & 2 + 3 & 3 + (-2) \\ 4 + 1 & -2 + (-4) & 1 + 2 \\ 0 + 0 & -2 + 1 & 1 + 4 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
So, the result of the matrix addition is:
[tex]\[ C_{\text{add}} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
### Matrix Multiplication:
Next, let's perform the multiplication of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
The product matrix [tex]\( C_{\text{mul}} \)[/tex] is calculated using the dot product of rows of [tex]\( A \)[/tex] with columns of [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The product [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = A \cdot B \][/tex]
Let's calculate each element of the resulting matrix:
[tex]\[ C_{\text{mul}} (1, 1) = 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0 = 1 + 2 + 0 = 3 \][/tex]
[tex]\[ C_{\text{mul}} (1, 2) = 1 \cdot 3 + 2 \cdot -4 + 3 \cdot 1 = 3 - 8 + 3 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (1, 3) = 1 \cdot -2 + 2 \cdot 2 + 3 \cdot 4 = -2 + 4 + 12 = 14 \][/tex]
[tex]\[ C_{\text{mul}} (2, 1) = 4 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 4 - 2 + 0 = 2 \][/tex]
[tex]\[ C_{\text{mul}} (2, 2) = 4 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 12 + 8 + 1 = 21 \][/tex]
[tex]\[ C_{\text{mul}} (2, 3) = 4 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = -8 - 4 + 4 = -8 \][/tex]
[tex]\[ C_{\text{mul}} (3, 1) = 0 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 0 - 2 + 0 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (3, 2) = 0 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 0 + 8 + 1 = 9 \][/tex]
[tex]\[ C_{\text{mul}} (3, 3) = 0 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = 0 - 4 + 4 = 0 \][/tex]
So, the product matrix [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
### Conclusion:
The result of the matrix addition is:
[tex]\[ \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
The result of the matrix multiplication is:
[tex]\[ \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.