IDNLearn.com makes it easy to get reliable answers from experts and enthusiasts alike. Get the information you need quickly and accurately with our reliable and thorough Q&A platform.
Sagot :
Certainly! Let's go through the step-by-step solution to perform the matrix addition and multiplication with the given matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
### Matrix Addition:
First, let's add the corresponding elements of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The sum of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is calculated as follows:
[tex]\[ C_{\text{add}} = A + B = \begin{pmatrix} 1 + 1 & 2 + 3 & 3 + (-2) \\ 4 + 1 & -2 + (-4) & 1 + 2 \\ 0 + 0 & -2 + 1 & 1 + 4 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
So, the result of the matrix addition is:
[tex]\[ C_{\text{add}} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
### Matrix Multiplication:
Next, let's perform the multiplication of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
The product matrix [tex]\( C_{\text{mul}} \)[/tex] is calculated using the dot product of rows of [tex]\( A \)[/tex] with columns of [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The product [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = A \cdot B \][/tex]
Let's calculate each element of the resulting matrix:
[tex]\[ C_{\text{mul}} (1, 1) = 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0 = 1 + 2 + 0 = 3 \][/tex]
[tex]\[ C_{\text{mul}} (1, 2) = 1 \cdot 3 + 2 \cdot -4 + 3 \cdot 1 = 3 - 8 + 3 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (1, 3) = 1 \cdot -2 + 2 \cdot 2 + 3 \cdot 4 = -2 + 4 + 12 = 14 \][/tex]
[tex]\[ C_{\text{mul}} (2, 1) = 4 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 4 - 2 + 0 = 2 \][/tex]
[tex]\[ C_{\text{mul}} (2, 2) = 4 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 12 + 8 + 1 = 21 \][/tex]
[tex]\[ C_{\text{mul}} (2, 3) = 4 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = -8 - 4 + 4 = -8 \][/tex]
[tex]\[ C_{\text{mul}} (3, 1) = 0 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 0 - 2 + 0 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (3, 2) = 0 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 0 + 8 + 1 = 9 \][/tex]
[tex]\[ C_{\text{mul}} (3, 3) = 0 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = 0 - 4 + 4 = 0 \][/tex]
So, the product matrix [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
### Conclusion:
The result of the matrix addition is:
[tex]\[ \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
The result of the matrix multiplication is:
[tex]\[ \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
### Matrix Addition:
First, let's add the corresponding elements of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The sum of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is calculated as follows:
[tex]\[ C_{\text{add}} = A + B = \begin{pmatrix} 1 + 1 & 2 + 3 & 3 + (-2) \\ 4 + 1 & -2 + (-4) & 1 + 2 \\ 0 + 0 & -2 + 1 & 1 + 4 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
So, the result of the matrix addition is:
[tex]\[ C_{\text{add}} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
### Matrix Multiplication:
Next, let's perform the multiplication of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
The product matrix [tex]\( C_{\text{mul}} \)[/tex] is calculated using the dot product of rows of [tex]\( A \)[/tex] with columns of [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The product [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = A \cdot B \][/tex]
Let's calculate each element of the resulting matrix:
[tex]\[ C_{\text{mul}} (1, 1) = 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0 = 1 + 2 + 0 = 3 \][/tex]
[tex]\[ C_{\text{mul}} (1, 2) = 1 \cdot 3 + 2 \cdot -4 + 3 \cdot 1 = 3 - 8 + 3 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (1, 3) = 1 \cdot -2 + 2 \cdot 2 + 3 \cdot 4 = -2 + 4 + 12 = 14 \][/tex]
[tex]\[ C_{\text{mul}} (2, 1) = 4 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 4 - 2 + 0 = 2 \][/tex]
[tex]\[ C_{\text{mul}} (2, 2) = 4 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 12 + 8 + 1 = 21 \][/tex]
[tex]\[ C_{\text{mul}} (2, 3) = 4 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = -8 - 4 + 4 = -8 \][/tex]
[tex]\[ C_{\text{mul}} (3, 1) = 0 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 0 - 2 + 0 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (3, 2) = 0 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 0 + 8 + 1 = 9 \][/tex]
[tex]\[ C_{\text{mul}} (3, 3) = 0 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = 0 - 4 + 4 = 0 \][/tex]
So, the product matrix [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
### Conclusion:
The result of the matrix addition is:
[tex]\[ \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
The result of the matrix multiplication is:
[tex]\[ \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Your questions are important to us at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.