Get the most out of your questions with the extensive resources available on IDNLearn.com. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
Certainly! Let's go through the step-by-step solution to perform the matrix addition and multiplication with the given matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
### Matrix Addition:
First, let's add the corresponding elements of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The sum of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is calculated as follows:
[tex]\[ C_{\text{add}} = A + B = \begin{pmatrix} 1 + 1 & 2 + 3 & 3 + (-2) \\ 4 + 1 & -2 + (-4) & 1 + 2 \\ 0 + 0 & -2 + 1 & 1 + 4 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
So, the result of the matrix addition is:
[tex]\[ C_{\text{add}} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
### Matrix Multiplication:
Next, let's perform the multiplication of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
The product matrix [tex]\( C_{\text{mul}} \)[/tex] is calculated using the dot product of rows of [tex]\( A \)[/tex] with columns of [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The product [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = A \cdot B \][/tex]
Let's calculate each element of the resulting matrix:
[tex]\[ C_{\text{mul}} (1, 1) = 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0 = 1 + 2 + 0 = 3 \][/tex]
[tex]\[ C_{\text{mul}} (1, 2) = 1 \cdot 3 + 2 \cdot -4 + 3 \cdot 1 = 3 - 8 + 3 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (1, 3) = 1 \cdot -2 + 2 \cdot 2 + 3 \cdot 4 = -2 + 4 + 12 = 14 \][/tex]
[tex]\[ C_{\text{mul}} (2, 1) = 4 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 4 - 2 + 0 = 2 \][/tex]
[tex]\[ C_{\text{mul}} (2, 2) = 4 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 12 + 8 + 1 = 21 \][/tex]
[tex]\[ C_{\text{mul}} (2, 3) = 4 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = -8 - 4 + 4 = -8 \][/tex]
[tex]\[ C_{\text{mul}} (3, 1) = 0 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 0 - 2 + 0 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (3, 2) = 0 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 0 + 8 + 1 = 9 \][/tex]
[tex]\[ C_{\text{mul}} (3, 3) = 0 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = 0 - 4 + 4 = 0 \][/tex]
So, the product matrix [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
### Conclusion:
The result of the matrix addition is:
[tex]\[ \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
The result of the matrix multiplication is:
[tex]\[ \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
### Matrix Addition:
First, let's add the corresponding elements of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The sum of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is calculated as follows:
[tex]\[ C_{\text{add}} = A + B = \begin{pmatrix} 1 + 1 & 2 + 3 & 3 + (-2) \\ 4 + 1 & -2 + (-4) & 1 + 2 \\ 0 + 0 & -2 + 1 & 1 + 4 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
So, the result of the matrix addition is:
[tex]\[ C_{\text{add}} = \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
### Matrix Multiplication:
Next, let's perform the multiplication of matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
The product matrix [tex]\( C_{\text{mul}} \)[/tex] is calculated using the dot product of rows of [tex]\( A \)[/tex] with columns of [tex]\( B \)[/tex].
Matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \][/tex]
Matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} 1 & 3 & -2 \\ 1 & -4 & 2 \\ 0 & 1 & 4 \end{pmatrix} \][/tex]
The product [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = A \cdot B \][/tex]
Let's calculate each element of the resulting matrix:
[tex]\[ C_{\text{mul}} (1, 1) = 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0 = 1 + 2 + 0 = 3 \][/tex]
[tex]\[ C_{\text{mul}} (1, 2) = 1 \cdot 3 + 2 \cdot -4 + 3 \cdot 1 = 3 - 8 + 3 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (1, 3) = 1 \cdot -2 + 2 \cdot 2 + 3 \cdot 4 = -2 + 4 + 12 = 14 \][/tex]
[tex]\[ C_{\text{mul}} (2, 1) = 4 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 4 - 2 + 0 = 2 \][/tex]
[tex]\[ C_{\text{mul}} (2, 2) = 4 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 12 + 8 + 1 = 21 \][/tex]
[tex]\[ C_{\text{mul}} (2, 3) = 4 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = -8 - 4 + 4 = -8 \][/tex]
[tex]\[ C_{\text{mul}} (3, 1) = 0 \cdot 1 + (-2) \cdot 1 + 1 \cdot 0 = 0 - 2 + 0 = -2 \][/tex]
[tex]\[ C_{\text{mul}} (3, 2) = 0 \cdot 3 + (-2) \cdot -4 + 1 \cdot 1 = 0 + 8 + 1 = 9 \][/tex]
[tex]\[ C_{\text{mul}} (3, 3) = 0 \cdot -2 + (-2) \cdot 2 + 1 \cdot 4 = 0 - 4 + 4 = 0 \][/tex]
So, the product matrix [tex]\( C_{\text{mul}} \)[/tex] is:
[tex]\[ C_{\text{mul}} = \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
### Conclusion:
The result of the matrix addition is:
[tex]\[ \begin{pmatrix} 2 & 5 & 1 \\ 5 & -6 & 3 \\ 0 & -1 & 5 \end{pmatrix} \][/tex]
The result of the matrix multiplication is:
[tex]\[ \begin{pmatrix} 3 & -2 & 14 \\ 2 & 21 & -8 \\ -2 & 9 & 0 \end{pmatrix} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.