IDNLearn.com offers a collaborative platform for sharing and gaining knowledge. Our community is here to provide detailed and trustworthy answers to any questions you may have.
Sagot :
To solve the given problem, we need to find the flow of the velocity field [tex]\( \mathbf{F} = 2xy\mathbf{i} + 2y\mathbf{j} + \mathbf{k} \)[/tex] along the curve [tex]\( \mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + \mathbf{k} \)[/tex] from [tex]\( t = 0 \)[/tex] to [tex]\( t = 4 \)[/tex].
Here are the steps:
Step 1: Parametrize the curve
The given curve is already parametrized as:
[tex]\[ \mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + \mathbf{k} \][/tex]
Step 2: Compute the derivative of [tex]\( \mathbf{r}(t) \)[/tex]
[tex]\[ \frac{d\mathbf{r}}{dt} = \frac{d}{dt}(t\mathbf{i} + t^2\mathbf{j} + \mathbf{k}) = \mathbf{i} + 2t\mathbf{j} + 0\mathbf{k} \][/tex]
Thus,
[tex]\[ \frac{d\mathbf{r}}{dt} = \mathbf{i} + 2t\mathbf{j} \][/tex]
Step 3: Substitute [tex]\( \mathbf{r}(t) \)[/tex] into [tex]\( \mathbf{F} \)[/tex]
Let’s find [tex]\( \mathbf{F}( \mathbf{r}(t) ) \)[/tex]:
[tex]\[ x = t, \quad y = t^2, \quad z = 1 \][/tex]
Hence,
[tex]\[ \mathbf{F}(t, t^2, 1) = 2xt^2\mathbf{i} + 2y\mathbf{j} + \mathbf{k} = 2t(t^2)\mathbf{i} + 2(t^2)\mathbf{j} + \mathbf{k} \][/tex]
[tex]\[ \mathbf{F}(t, t^2, 1) = 2t^3\mathbf{i} + 2t^2\mathbf{j} + \mathbf{k} \][/tex]
Step 4: Compute the dot product [tex]\( \mathbf{F}( \mathbf{r}(t) ) \cdot \frac{d\mathbf{r}}{dt} \)[/tex]
[tex]\[ \mathbf{F}(t, t^2, 1) \cdot \frac{d\mathbf{r}}{dt} = (2t^3\mathbf{i} + 2t^2\mathbf{j} + \mathbf{k}) \cdot (\mathbf{i} + 2t\mathbf{j}) \][/tex]
[tex]\[ = (2t^3)(1) + (2t^2)(2t) + (1)(0) \][/tex]
[tex]\[ = 2t^3 + 4t^3 \][/tex]
[tex]\[ = 6t^3 \][/tex]
Step 5: Integrate [tex]\( 6t^3 \)[/tex] from [tex]\( t = 0 \)[/tex] to [tex]\( t = 4 \)[/tex]
The integrand is [tex]\( 6t^3 \)[/tex], so we need to compute:
[tex]\[ \int_{0}^{4} 6t^3 \, dt \][/tex]
First, find the antiderivative of [tex]\( 6t^3 \)[/tex]:
[tex]\[ \int 6t^3 \, dt = 6 \cdot \frac{t^4}{4} = \frac{3t^4}{2} \][/tex]
Now, evaluate this at the boundaries:
[tex]\[ \left[ \frac{3t^4}{2} \right]_{0}^{4} = \frac{3(4)^4}{2} - \frac{3(0)^4}{2} \][/tex]
[tex]\[ = \frac{3 \cdot 256}{2} - 0 \][/tex]
[tex]\[ = \frac{768}{2} \][/tex]
[tex]\[ = 384 \][/tex]
Therefore, the flow along the curve is:
[tex]\[ \boxed{384} \][/tex]
Here are the steps:
Step 1: Parametrize the curve
The given curve is already parametrized as:
[tex]\[ \mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + \mathbf{k} \][/tex]
Step 2: Compute the derivative of [tex]\( \mathbf{r}(t) \)[/tex]
[tex]\[ \frac{d\mathbf{r}}{dt} = \frac{d}{dt}(t\mathbf{i} + t^2\mathbf{j} + \mathbf{k}) = \mathbf{i} + 2t\mathbf{j} + 0\mathbf{k} \][/tex]
Thus,
[tex]\[ \frac{d\mathbf{r}}{dt} = \mathbf{i} + 2t\mathbf{j} \][/tex]
Step 3: Substitute [tex]\( \mathbf{r}(t) \)[/tex] into [tex]\( \mathbf{F} \)[/tex]
Let’s find [tex]\( \mathbf{F}( \mathbf{r}(t) ) \)[/tex]:
[tex]\[ x = t, \quad y = t^2, \quad z = 1 \][/tex]
Hence,
[tex]\[ \mathbf{F}(t, t^2, 1) = 2xt^2\mathbf{i} + 2y\mathbf{j} + \mathbf{k} = 2t(t^2)\mathbf{i} + 2(t^2)\mathbf{j} + \mathbf{k} \][/tex]
[tex]\[ \mathbf{F}(t, t^2, 1) = 2t^3\mathbf{i} + 2t^2\mathbf{j} + \mathbf{k} \][/tex]
Step 4: Compute the dot product [tex]\( \mathbf{F}( \mathbf{r}(t) ) \cdot \frac{d\mathbf{r}}{dt} \)[/tex]
[tex]\[ \mathbf{F}(t, t^2, 1) \cdot \frac{d\mathbf{r}}{dt} = (2t^3\mathbf{i} + 2t^2\mathbf{j} + \mathbf{k}) \cdot (\mathbf{i} + 2t\mathbf{j}) \][/tex]
[tex]\[ = (2t^3)(1) + (2t^2)(2t) + (1)(0) \][/tex]
[tex]\[ = 2t^3 + 4t^3 \][/tex]
[tex]\[ = 6t^3 \][/tex]
Step 5: Integrate [tex]\( 6t^3 \)[/tex] from [tex]\( t = 0 \)[/tex] to [tex]\( t = 4 \)[/tex]
The integrand is [tex]\( 6t^3 \)[/tex], so we need to compute:
[tex]\[ \int_{0}^{4} 6t^3 \, dt \][/tex]
First, find the antiderivative of [tex]\( 6t^3 \)[/tex]:
[tex]\[ \int 6t^3 \, dt = 6 \cdot \frac{t^4}{4} = \frac{3t^4}{2} \][/tex]
Now, evaluate this at the boundaries:
[tex]\[ \left[ \frac{3t^4}{2} \right]_{0}^{4} = \frac{3(4)^4}{2} - \frac{3(0)^4}{2} \][/tex]
[tex]\[ = \frac{3 \cdot 256}{2} - 0 \][/tex]
[tex]\[ = \frac{768}{2} \][/tex]
[tex]\[ = 384 \][/tex]
Therefore, the flow along the curve is:
[tex]\[ \boxed{384} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.