Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
To solve the equation [tex]\((x^4)^2 = x\)[/tex], let's go through a detailed, step-by-step process.
### Step 1: Simplify the Exponential Equation
First, simplify [tex]\((x^4)^2\)[/tex]:
[tex]\[ (x^4)^2 = x^{4 \cdot 2} = x^8 \][/tex]
So the equation [tex]\( (x^4)^2 = x \)[/tex] becomes:
[tex]\[ x^8 = x \][/tex]
### Step 2: Set the Equation to Zero
Rearrange the equation to set it to zero:
[tex]\[ x^8 - x = 0 \][/tex]
### Step 3: Factor Out the Common Term
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^7 - 1) = 0 \][/tex]
This gives us two simpler equations to solve:
1. [tex]\(x = 0\)[/tex]
2. [tex]\(x^7 - 1 = 0\)[/tex]
### Step 4: Solve for [tex]\( x = 0 \)[/tex]
The first equation [tex]\(x = 0\)[/tex] gives us one solution:
[tex]\[ x = 0 \][/tex]
### Step 5: Solve [tex]\( x^7 - 1 = 0 \)[/tex]
The second equation [tex]\(x^7 - 1 = 0\)[/tex] can be solved by noting that it's a difference of powers:
[tex]\[ x^7 = 1 \][/tex]
### Step 6: Find the Roots of [tex]\( x^7 = 1 \)[/tex]
The equation [tex]\(x^7 = 1\)[/tex] represents the 7th roots of unity. These are complex numbers that satisfy the equation. The solutions are given by:
[tex]\[ x = e^{2k\pi i / 7} \quad \text{for} \quad k = 0, 1, 2, 3, 4, 5, 6 \][/tex]
### Step 7: Express the Roots of Unity in Trigonometric Form
Express these solutions using Euler's formula [tex]\( e^{i\theta} = \cos(\theta) + i\sin(\theta) \)[/tex]:
[tex]\[ x_k = \cos\left(\frac{2k\pi}{7}\right) + i\sin\left(\frac{2k\pi}{7}\right) \quad \text{for} \quad k = 0, 1, 2, 3, 4, 5, 6 \][/tex]
### Step 8: List All Solutions
Combining the solutions, the full set of solutions for the equation [tex]\( (x^4)^2 = x \)[/tex] is:
[tex]\[ x = 0, 1, e^{2\pi i / 7}, e^{4\pi i / 7}, e^{6\pi i / 7}, e^{8\pi i / 7}, e^{10\pi i / 7}, e^{12\pi i / 7} \][/tex]
Expressing these roots of unity in trigonometric forms:
[tex]\[ 0, 1, \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right), \cos\left(\frac{4\pi}{7}\right) + i\sin\left(\frac{4\pi}{7}\right), \cos\left(\frac{6\pi}{7}\right) + i\sin\left(\frac{6\pi}{7}\right), \][/tex]
[tex]\[ \cos\left(\frac{8\pi}{7}\right) + i\sin\left(\frac{8\pi}{7}\right), \cos\left(\frac{10\pi}{7}\right) + i\sin\left(\frac{10\pi}{7}\right), \cos\left(\frac{12\pi}{7}\right) + i\sin\left(\frac{12\pi}{7}\right) \][/tex]
Since cosine and sine are functions that have symmetry properties, some solutions simplify to their negative counterparts. Essentially, the solutions reflect the symmetry on the unit circle:
[tex]\[ 0, 1, -\cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right), -\cos\left(\frac{\pi}{7}\right) - i\sin\left(\frac{\pi}{7}\right), \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right), \][/tex]
[tex]\[ \cos\left(\frac{2\pi}{7}\right) - i\sin\left(\frac{2\pi}{7}\right), -\cos\left(\frac{3\pi}{7}\right) + i\sin\left(\frac{3\pi}{7}\right), -\cos\left(\frac{3\pi}{7}\right) - i\sin\left(\frac{3\pi}{7}\right) \][/tex]
So, the solutions are:
[tex]\[ [0, 1, -\cos\left(\frac{\pi}{7}\right) - i\sin\left(\frac{\pi}{7}\right), -\cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right), \cos\left(\frac{2\pi}{7}\right) - i\sin\left(\frac{2\pi}{7}\right), \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right), -\cos\left(\frac{3\pi}{7}\right) - i\sin\left(\frac{3\pi}{7}\right), -\cos\left(\frac{3\pi}{7}\right) + i\sin\left(\frac{3\pi}{7}\right)] \][/tex]
### Step 1: Simplify the Exponential Equation
First, simplify [tex]\((x^4)^2\)[/tex]:
[tex]\[ (x^4)^2 = x^{4 \cdot 2} = x^8 \][/tex]
So the equation [tex]\( (x^4)^2 = x \)[/tex] becomes:
[tex]\[ x^8 = x \][/tex]
### Step 2: Set the Equation to Zero
Rearrange the equation to set it to zero:
[tex]\[ x^8 - x = 0 \][/tex]
### Step 3: Factor Out the Common Term
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^7 - 1) = 0 \][/tex]
This gives us two simpler equations to solve:
1. [tex]\(x = 0\)[/tex]
2. [tex]\(x^7 - 1 = 0\)[/tex]
### Step 4: Solve for [tex]\( x = 0 \)[/tex]
The first equation [tex]\(x = 0\)[/tex] gives us one solution:
[tex]\[ x = 0 \][/tex]
### Step 5: Solve [tex]\( x^7 - 1 = 0 \)[/tex]
The second equation [tex]\(x^7 - 1 = 0\)[/tex] can be solved by noting that it's a difference of powers:
[tex]\[ x^7 = 1 \][/tex]
### Step 6: Find the Roots of [tex]\( x^7 = 1 \)[/tex]
The equation [tex]\(x^7 = 1\)[/tex] represents the 7th roots of unity. These are complex numbers that satisfy the equation. The solutions are given by:
[tex]\[ x = e^{2k\pi i / 7} \quad \text{for} \quad k = 0, 1, 2, 3, 4, 5, 6 \][/tex]
### Step 7: Express the Roots of Unity in Trigonometric Form
Express these solutions using Euler's formula [tex]\( e^{i\theta} = \cos(\theta) + i\sin(\theta) \)[/tex]:
[tex]\[ x_k = \cos\left(\frac{2k\pi}{7}\right) + i\sin\left(\frac{2k\pi}{7}\right) \quad \text{for} \quad k = 0, 1, 2, 3, 4, 5, 6 \][/tex]
### Step 8: List All Solutions
Combining the solutions, the full set of solutions for the equation [tex]\( (x^4)^2 = x \)[/tex] is:
[tex]\[ x = 0, 1, e^{2\pi i / 7}, e^{4\pi i / 7}, e^{6\pi i / 7}, e^{8\pi i / 7}, e^{10\pi i / 7}, e^{12\pi i / 7} \][/tex]
Expressing these roots of unity in trigonometric forms:
[tex]\[ 0, 1, \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right), \cos\left(\frac{4\pi}{7}\right) + i\sin\left(\frac{4\pi}{7}\right), \cos\left(\frac{6\pi}{7}\right) + i\sin\left(\frac{6\pi}{7}\right), \][/tex]
[tex]\[ \cos\left(\frac{8\pi}{7}\right) + i\sin\left(\frac{8\pi}{7}\right), \cos\left(\frac{10\pi}{7}\right) + i\sin\left(\frac{10\pi}{7}\right), \cos\left(\frac{12\pi}{7}\right) + i\sin\left(\frac{12\pi}{7}\right) \][/tex]
Since cosine and sine are functions that have symmetry properties, some solutions simplify to their negative counterparts. Essentially, the solutions reflect the symmetry on the unit circle:
[tex]\[ 0, 1, -\cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right), -\cos\left(\frac{\pi}{7}\right) - i\sin\left(\frac{\pi}{7}\right), \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right), \][/tex]
[tex]\[ \cos\left(\frac{2\pi}{7}\right) - i\sin\left(\frac{2\pi}{7}\right), -\cos\left(\frac{3\pi}{7}\right) + i\sin\left(\frac{3\pi}{7}\right), -\cos\left(\frac{3\pi}{7}\right) - i\sin\left(\frac{3\pi}{7}\right) \][/tex]
So, the solutions are:
[tex]\[ [0, 1, -\cos\left(\frac{\pi}{7}\right) - i\sin\left(\frac{\pi}{7}\right), -\cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right), \cos\left(\frac{2\pi}{7}\right) - i\sin\left(\frac{2\pi}{7}\right), \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right), -\cos\left(\frac{3\pi}{7}\right) - i\sin\left(\frac{3\pi}{7}\right), -\cos\left(\frac{3\pi}{7}\right) + i\sin\left(\frac{3\pi}{7}\right)] \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.