Find solutions to your questions with the help of IDNLearn.com's expert community. Ask anything and receive thorough, reliable answers from our community of experienced professionals.

Use Hess's law and the following equations to calculate [tex]\Delta H[/tex] for the reaction [tex]N_2(g) + 2 O_2(g) \rightarrow N_2O_4(g)[/tex]. (Show your work.)

(8 points)

1. [tex]2 NO_2(g) \rightarrow N_2O_4(g)[/tex]
\([tex]\Delta H = -57.0 \text{ kJ/mol}[/tex]\)

2. [tex]2 NO_2(g) \rightarrow 2 NO(g) + O_2(g)[/tex]
\([tex]\Delta H = 180.6 \text{ kJ/mol}[/tex]\)

3. [tex]2 NO(g) + O_2(g) \rightarrow 2 NO_2(g)[/tex]
[tex]\([tex]\Delta H = 114.4 \text{ kJ/mol}[/tex]\)[/tex]

Calculate the overall [tex]\Delta H[/tex] for the reaction.


Sagot :

Alright, let's solve the problem using Hess's Law step-by-step. Hess's Law states that the total enthalpy change for a reaction is the sum of the enthalpy changes for the individual steps that lead to the overall reaction.

Given the following reactions and their respective enthalpy changes ([tex]\(\Delta H\)[/tex]):

1. [tex]\(2 NO_2(g) \rightarrow N_2O_4(g)\)[/tex]
[tex]\(\Delta H = -57.0 \, kJ/mol\)[/tex]

2. [tex]\(N_2(g) + O_2(g) \rightarrow 2 NO(g)\)[/tex]
[tex]\(\Delta H = 180.6 \, kJ/mol\)[/tex]

3. [tex]\(2 NO(g) + O_2(g) \rightarrow 2 NO_2(g)\)[/tex]
[tex]\(\Delta H = 114.4 \, kJ/mol\)[/tex]

We need to find the enthalpy change ([tex]\(\Delta H\)[/tex]) for the following reaction:

[tex]\(N_2(g) + 2 O_2(g) \rightarrow N_2O_4(g)\)[/tex]

### Step-by-Step Solution:

1. First, we need to understand the target reaction and the given reactions:

- Target Reaction: [tex]\(N_2(g) + 2 O_2(g) \rightarrow N_2O_4(g)\)[/tex]
- Reaction 1: [tex]\(2 NO_2(g) \rightarrow N_2O_4(g)\)[/tex]
- Reaction 2: [tex]\(N_2(g) + O_2(g) \rightarrow 2 NO(g)\)[/tex]
- Reaction 3: [tex]\(2 NO(g) + O_2(g) \rightarrow 2 NO_2(g)\)[/tex]

2. Re-engineer the given reactions to achieve the target reaction:

- Reaction 1 can be used as it is:
[tex]\[ 2 NO_2(g) \rightarrow N_2O_4(g) \quad (\Delta H = -57.0 \, kJ/mol) \][/tex]

- Reaction 2 can also be used directly:
[tex]\[ N_2(g) + O_2(g) \rightarrow 2 NO(g) \quad (\Delta H = 180.6 \, kJ/mol) \][/tex]

- Reaction 3 needs to be reversed to produce [tex]\(2 NO_2(g)\)[/tex] from [tex]\(2 NO(g) + O_2(g)\)[/tex], and the sign of [tex]\(\Delta H\)[/tex] will change:
[tex]\[ 2 NO_2(g) \rightarrow 2 NO(g) + O_2(g) \quad (\Delta H = -114.4 \, kJ/mol) \][/tex]

3. Adjust the stoichiometry if necessary and combine reactions:

Based on the stoichiometry, if we sum the given reactions in their proper forms, we'll get:

- Reaction 2:
[tex]\[ N_2(g) + O_2(g) \rightarrow 2 NO(g) \quad (\Delta H = 180.6 \, kJ/mol) \][/tex]
- Reversed Reaction 3:
[tex]\[ 2 NO_2(g) \rightarrow 2 NO(g) + O_2(g) \quad (\Delta H = -114.4 \, kJ/mol) \][/tex]
- Reaction 1:
[tex]\[ 2 NO_2(g) \rightarrow N_2O_4(g) \quad (\Delta H = -57.0 \, kJ/mol) \][/tex]

4. Combine the enthalpy changes:

Since Reaction 3 is used in reverse, the enthalpy change of [tex]\(114.4 \, kJ/mol\)[/tex] will be negative. Add the enthalpy changes for these reactions:

[tex]\[ \Delta H_{\text{total}} = 180.6 \, kJ/mol + (-114.4 \, kJ/mol) + (-57.0 \, kJ/mol) \][/tex]

[tex]\[ \Delta H_{\text{total}} = 180.6 \, kJ/mol - 114.4 \, kJ/mol - 57.0 \, kJ/mol \][/tex]

[tex]\[ \Delta H_{\text{total}} = 66.4 \, kJ/mol \][/tex]

Therefore, the overall enthalpy change ([tex]\(\Delta H\)[/tex]) for the reaction [tex]\(N_2(g) + 2 O_2(g) \rightarrow N_2O_4(g)\)[/tex] is [tex]\(66.4 \, kJ/mol\)[/tex].