Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Join our community to receive prompt and reliable responses to your questions from experienced professionals.
Sagot :
To find the variance of the uniform discrete random variable [tex]\(X\)[/tex] with possible values [tex]\(1, 2, \ldots, n\)[/tex], let's follow these steps:
1. Calculate the Mean [tex]\( \mu \)[/tex] of [tex]\(X\)[/tex]:
The mean (or expected value) of a uniform discrete random variable [tex]\(X\)[/tex], taking values from [tex]\(1\)[/tex] to [tex]\(n\)[/tex], is given by:
[tex]\[ \mu = E(X) = \frac{1 + 2 + \cdots + n}{n} \][/tex]
Using the formula for the sum of the first [tex]\(n\)[/tex] natural numbers:
[tex]\[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \][/tex]
Therefore,
[tex]\[ E(X) = \frac{1 + 2 + \cdots + n}{n} = \frac{\frac{n(n+1)}{2}}{n} = \frac{n+1}{2} \][/tex]
Hence, the mean [tex]\( \mu \)[/tex] is:
[tex]\[ \mu = \frac{n+1}{2} \][/tex]
2. Calculate [tex]\( E(X^2) \)[/tex]:
We need the expected value of [tex]\(X^2\)[/tex]:
[tex]\[ E(X^2) = \frac{1^2 + 2^2 + \cdots + n^2}{n} \][/tex]
Using the given hint for the sum of squares:
[tex]\[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \][/tex]
So,
[tex]\[ E(X^2) = \frac{1^2 + 2^2 + \cdots + n^2}{n} = \frac{\frac{n(n+1)(2n+1)}{6}}{n} = \frac{(n+1)(2n+1)}{6} \][/tex]
3. Calculate the Variance [tex]\( \text{Var}(X) \)[/tex]:
The variance of [tex]\(X\)[/tex] is given by:
[tex]\[ \text{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
Substitute [tex]\( E(X) \)[/tex] and [tex]\( E(X^2) \)[/tex] into the variance formula:
[tex]\[ \text{Var}(X) = \frac{(n+1)(2n+1)}{6} - \left( \frac{n+1}{2} \right)^2 \][/tex]
4. Simplify the Expression:
First, calculate [tex]\( \left( \frac{n+1}{2} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{n+1}{2} \right)^2 = \frac{(n+1)^2}{4} \][/tex]
Now, let's put everything together:
[tex]\[ \text{Var}(X) = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} \][/tex]
To combine the terms, we need a common denominator, which is 12:
[tex]\[ \text{Var}(X) = \frac{2(n+1)(2n+1)}{12} - \frac{3(n+1)^2}{12} \][/tex]
Simplify the numerator:
[tex]\[ \text{Var}(X) = \frac{2(n+1)(2n+1) - 3(n+1)^2}{12} \][/tex]
Factor out [tex]\( (n+1) \)[/tex]:
[tex]\[ \text{Var}(X) = \frac{(n+1) [2(2n+1) - 3(n+1)]}{12} \][/tex]
Simplify inside the brackets:
[tex]\[ 2(2n+1) - 3(n+1) = 4n + 2 - 3n - 3 = n - 1 \][/tex]
Thus,
[tex]\[ \text{Var}(X) = \frac{(n+1)(n-1)}{12} = \frac{n^2 - 1}{12} \][/tex]
Hence, the variance of [tex]\(X\)[/tex] is:
[tex]\[ \boxed{\frac{n^2 - 1}{12}} \][/tex]
1. Calculate the Mean [tex]\( \mu \)[/tex] of [tex]\(X\)[/tex]:
The mean (or expected value) of a uniform discrete random variable [tex]\(X\)[/tex], taking values from [tex]\(1\)[/tex] to [tex]\(n\)[/tex], is given by:
[tex]\[ \mu = E(X) = \frac{1 + 2 + \cdots + n}{n} \][/tex]
Using the formula for the sum of the first [tex]\(n\)[/tex] natural numbers:
[tex]\[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \][/tex]
Therefore,
[tex]\[ E(X) = \frac{1 + 2 + \cdots + n}{n} = \frac{\frac{n(n+1)}{2}}{n} = \frac{n+1}{2} \][/tex]
Hence, the mean [tex]\( \mu \)[/tex] is:
[tex]\[ \mu = \frac{n+1}{2} \][/tex]
2. Calculate [tex]\( E(X^2) \)[/tex]:
We need the expected value of [tex]\(X^2\)[/tex]:
[tex]\[ E(X^2) = \frac{1^2 + 2^2 + \cdots + n^2}{n} \][/tex]
Using the given hint for the sum of squares:
[tex]\[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \][/tex]
So,
[tex]\[ E(X^2) = \frac{1^2 + 2^2 + \cdots + n^2}{n} = \frac{\frac{n(n+1)(2n+1)}{6}}{n} = \frac{(n+1)(2n+1)}{6} \][/tex]
3. Calculate the Variance [tex]\( \text{Var}(X) \)[/tex]:
The variance of [tex]\(X\)[/tex] is given by:
[tex]\[ \text{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
Substitute [tex]\( E(X) \)[/tex] and [tex]\( E(X^2) \)[/tex] into the variance formula:
[tex]\[ \text{Var}(X) = \frac{(n+1)(2n+1)}{6} - \left( \frac{n+1}{2} \right)^2 \][/tex]
4. Simplify the Expression:
First, calculate [tex]\( \left( \frac{n+1}{2} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{n+1}{2} \right)^2 = \frac{(n+1)^2}{4} \][/tex]
Now, let's put everything together:
[tex]\[ \text{Var}(X) = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} \][/tex]
To combine the terms, we need a common denominator, which is 12:
[tex]\[ \text{Var}(X) = \frac{2(n+1)(2n+1)}{12} - \frac{3(n+1)^2}{12} \][/tex]
Simplify the numerator:
[tex]\[ \text{Var}(X) = \frac{2(n+1)(2n+1) - 3(n+1)^2}{12} \][/tex]
Factor out [tex]\( (n+1) \)[/tex]:
[tex]\[ \text{Var}(X) = \frac{(n+1) [2(2n+1) - 3(n+1)]}{12} \][/tex]
Simplify inside the brackets:
[tex]\[ 2(2n+1) - 3(n+1) = 4n + 2 - 3n - 3 = n - 1 \][/tex]
Thus,
[tex]\[ \text{Var}(X) = \frac{(n+1)(n-1)}{12} = \frac{n^2 - 1}{12} \][/tex]
Hence, the variance of [tex]\(X\)[/tex] is:
[tex]\[ \boxed{\frac{n^2 - 1}{12}} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.