IDNLearn.com: Your reliable source for finding precise answers. Get the information you need from our community of experts, who provide detailed and trustworthy answers.
Sagot :
Sure, let's work through the problem step-by-step to estimate the percentage elongation of a circular bar with a diameter of 2.5 cm, subjected to an axial tension of 20 kN, with a Young's modulus of 70 GPa.
### Step 1: Convert Units
1. Diameter: Convert diameter from centimeters to meters.
- Diameter in meters, [tex]\( d \)[/tex]:
[tex]\[ d = 2.5 \, \text{cm} \times \frac{1 \, \text{m}}{100 \, \text{cm}} = 0.025 \, \text{m} \][/tex]
2. Tension: Convert tension from kilonewtons to newtons.
- Tension in newtons, [tex]\( F \)[/tex]:
[tex]\[ F = 20 \, \text{kN} \times 1000 \, \frac{\text{N}}{\text{kN}} = 20000 \, \text{N} \][/tex]
3. Young's Modulus: Convert Young's modulus from GPa to Pascals.
- Young's modulus in Pascals, [tex]\( E \)[/tex]:
[tex]\[ E = 70 \, \text{GPa} \times 10^9 \, \frac{\text{Pa}}{\text{GPa}} = 70 \times 10^9 \, \text{Pa} = 70000000000 \, \text{Pa} \][/tex]
### Step 2: Calculate the Cross-sectional Area
The bar is circular, so its cross-sectional area, [tex]\( A \)[/tex], can be calculated using the formula for the area of a circle:
[tex]\[ A = \pi \left( \frac{d}{2} \right)^2 \][/tex]
Plug in the diameter in meters:
[tex]\[ A = \pi \left( \frac{0.025}{2} \right)^2 \approx 0.000490873852 \, \text{m}^2 \][/tex]
### Step 3: Calculate the Stress
Stress, [tex]\( \sigma \)[/tex], is defined as the force [tex]\( F \)[/tex] divided by the cross-sectional area [tex]\( A \)[/tex]:
[tex]\[ \sigma = \frac{F}{A} \][/tex]
Plug in the values of tension and area:
[tex]\[ \sigma = \frac{20000 \, \text{N}}{0.000490873852 \, \text{m}^2} \approx 40743665.4315252 \, \text{Pa} \][/tex]
### Step 4: Calculate the Strain
Strain, [tex]\( \varepsilon \)[/tex], is defined as the stress [tex]\( \sigma \)[/tex] divided by Young's modulus [tex]\( E \)[/tex]:
[tex]\[ \varepsilon = \frac{\sigma}{E} \][/tex]
Plug in the values of stress and Young's modulus:
[tex]\[ \varepsilon = \frac{40743665.4315252 \, \text{Pa}}{70000000000 \, \text{Pa}} \approx 0.000582052363 \][/tex]
### Step 5: Calculate the Percentage Elongation
Percentage elongation is the strain multiplied by 100:
[tex]\[ \text{Percentage Elongation} = \varepsilon \times 100 \][/tex]
Plug in the value of strain:
[tex]\[ \text{Percentage Elongation} \approx 0.000582052363 \times 100 \approx 0.058205236 \][/tex]
So, the estimated percentage elongation of the circular bar under the given conditions is approximately [tex]\( 0.0582\% \)[/tex].
### Step 1: Convert Units
1. Diameter: Convert diameter from centimeters to meters.
- Diameter in meters, [tex]\( d \)[/tex]:
[tex]\[ d = 2.5 \, \text{cm} \times \frac{1 \, \text{m}}{100 \, \text{cm}} = 0.025 \, \text{m} \][/tex]
2. Tension: Convert tension from kilonewtons to newtons.
- Tension in newtons, [tex]\( F \)[/tex]:
[tex]\[ F = 20 \, \text{kN} \times 1000 \, \frac{\text{N}}{\text{kN}} = 20000 \, \text{N} \][/tex]
3. Young's Modulus: Convert Young's modulus from GPa to Pascals.
- Young's modulus in Pascals, [tex]\( E \)[/tex]:
[tex]\[ E = 70 \, \text{GPa} \times 10^9 \, \frac{\text{Pa}}{\text{GPa}} = 70 \times 10^9 \, \text{Pa} = 70000000000 \, \text{Pa} \][/tex]
### Step 2: Calculate the Cross-sectional Area
The bar is circular, so its cross-sectional area, [tex]\( A \)[/tex], can be calculated using the formula for the area of a circle:
[tex]\[ A = \pi \left( \frac{d}{2} \right)^2 \][/tex]
Plug in the diameter in meters:
[tex]\[ A = \pi \left( \frac{0.025}{2} \right)^2 \approx 0.000490873852 \, \text{m}^2 \][/tex]
### Step 3: Calculate the Stress
Stress, [tex]\( \sigma \)[/tex], is defined as the force [tex]\( F \)[/tex] divided by the cross-sectional area [tex]\( A \)[/tex]:
[tex]\[ \sigma = \frac{F}{A} \][/tex]
Plug in the values of tension and area:
[tex]\[ \sigma = \frac{20000 \, \text{N}}{0.000490873852 \, \text{m}^2} \approx 40743665.4315252 \, \text{Pa} \][/tex]
### Step 4: Calculate the Strain
Strain, [tex]\( \varepsilon \)[/tex], is defined as the stress [tex]\( \sigma \)[/tex] divided by Young's modulus [tex]\( E \)[/tex]:
[tex]\[ \varepsilon = \frac{\sigma}{E} \][/tex]
Plug in the values of stress and Young's modulus:
[tex]\[ \varepsilon = \frac{40743665.4315252 \, \text{Pa}}{70000000000 \, \text{Pa}} \approx 0.000582052363 \][/tex]
### Step 5: Calculate the Percentage Elongation
Percentage elongation is the strain multiplied by 100:
[tex]\[ \text{Percentage Elongation} = \varepsilon \times 100 \][/tex]
Plug in the value of strain:
[tex]\[ \text{Percentage Elongation} \approx 0.000582052363 \times 100 \approx 0.058205236 \][/tex]
So, the estimated percentage elongation of the circular bar under the given conditions is approximately [tex]\( 0.0582\% \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.