IDNLearn.com: Where your questions are met with thoughtful and precise answers. Ask any question and get a thorough, accurate answer from our community of experienced professionals.
Sagot :
Certainly! Let's go through each part of the question step by step.
### Question 1
Solve [tex]\( z^3 - 2z - 4 = 0 \)[/tex] for the set of complex numbers.
#### Solution:
Given the hint [tex]\( z = 2 \)[/tex] is a solution to this equation, we need to find all roots of the polynomial.
The polynomial is:
[tex]\[ z^3 - 2z - 4 = 0 \][/tex]
We already know one root, [tex]\( z = 2 \)[/tex]. We can factor this polynomial using synthetic division or other methods, but the roots for the polynomial [tex]\( z^3 - 2z - 4 = 0 \)[/tex] are:
[tex]\[ z = 2, \, z = -1 - i, \, z = -1 + i \][/tex]
So, the solutions to the equation [tex]\( z^3 - 2z - 4 = 0 \)[/tex] are [tex]\( \{2, -1 - i, -1 + i\} \)[/tex].
### Question 2
Let [tex]\( z_1 = 1 + i \)[/tex], [tex]\( z_2 = 2 + i \)[/tex], and [tex]\( z_3 = 3 - i \)[/tex]. Calculate:
#### (a) [tex]\( z_1 z_2 \)[/tex]
To find the product of [tex]\( z_1 \)[/tex] and [tex]\( z_2 \)[/tex]:
[tex]\[ z_1 z_2 = (1+i)(2+i) \][/tex]
Expanding the product:
[tex]\[ (1+i)(2+i) = 1 \cdot 2 + 1 \cdot i + i \cdot 2 + i \cdot i \][/tex]
[tex]\[ = 2 + i + 2i + i^2 \][/tex]
[tex]\[ = 2 + 3i + (-1) \][/tex]
[tex]\[ = 1 + 3i \][/tex]
So, [tex]\( z_1 z_2 = 1 + 3i \)[/tex].
#### (b) [tex]\( |z_3| \)[/tex]
To find the magnitude of [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = 3 - i \][/tex]
The magnitude is given by:
[tex]\[ |z_3| = \sqrt{(\text{Re}(z_3))^2 + (\text{Im}(z_3))^2} \][/tex]
[tex]\[ = \sqrt{3^2 + (-1)^2} \][/tex]
[tex]\[ = \sqrt{9 + 1} \][/tex]
[tex]\[ = \sqrt{10} \][/tex]
[tex]\[ \approx 3.162 \][/tex]
So, [tex]\( |z_3| \approx 3.162 \)[/tex].
#### (c) [tex]\( \operatorname{Im}\left(\frac{z_1}{z_2}\right) \)[/tex]
To find the imaginary part of [tex]\( \frac{z_1}{z_2} \)[/tex]:
[tex]\[ z_1 = 1 + i \][/tex]
[tex]\[ z_2 = 2 + i \][/tex]
[tex]\[ \frac{z_1}{z_2} = \frac{1 + i}{2 + i} \][/tex]
To simplify, multiply the numerator and denominator by the conjugate of the denominator:
[tex]\[ \frac{1 + i}{2 + i} \cdot \frac{2 - i}{2 - i} \][/tex]
[tex]\[ = \frac{(1+i)(2-i)}{(2+i)(2-i)} \][/tex]
[tex]\[ = \frac{2 + i - 2i - i^2}{4 + 1} \][/tex]
[tex]\[ = \frac{2 - i - (-1)}{5} \][/tex]
[tex]\[ = \frac{3 - i}{5} \][/tex]
[tex]\[ = \frac{3}{5} - \frac{i}{5} \][/tex]
[tex]\[ = 0.6 - 0.2i \][/tex]
The imaginary part is:
[tex]\[ \operatorname{Im}\left(\frac{z_1}{z_2}\right) = -0.2 \][/tex]
So, [tex]\( \operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0.2 \)[/tex].
#### (d) [tex]\( \operatorname{Arg}(\bar{z}_1) \)[/tex]
To find the argument of the conjugate of [tex]\( z_1 \)[/tex]:
[tex]\[ z_1 = 1 + i \][/tex]
[tex]\[ \bar{z}_1 = 1 - i \][/tex]
The argument is the angle the complex number makes with the positive real axis.
For [tex]\( 1 - i \)[/tex], it is in the fourth quadrant:
[tex]\[ \theta = \arctan\left(\frac{-1}{1}\right) \][/tex]
[tex]\[ = \arctan(-1) \][/tex]
[tex]\[ = -\frac{\pi}{4} \][/tex]
So, [tex]\( \operatorname{Arg}(\bar{z}_1) = -\frac{\pi}{4} \approx -0.785 \)[/tex].
#### (e) [tex]\( z_1 + 2 z_3 \)[/tex]
To find [tex]\( z_1 + 2z_3 \)[/tex]:
[tex]\[ z_1 = 1 + i \][/tex]
[tex]\[ z_3 = 3 - i \][/tex]
[tex]\[ z_1 + 2z_3 = (1 + i) + 2(3 - i) \][/tex]
[tex]\[ = 1 + i + 6 - 2i \][/tex]
[tex]\[ = 7 - i \][/tex]
So, [tex]\( z_1 + 2z_3 = 7 - i \)[/tex].
Hence:
1. [tex]\[ \text{Solutions to } z^3 - 2z - 4 = 0: \{2, -1 - i, -1 + i\} \][/tex]
2. [tex]\( z_1 z_2 = 1 + 3i \)[/tex]
3. [tex]\( |z_3| \approx 3.162 \)[/tex]
4. [tex]\( \operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0.2 \)[/tex]
5. [tex]\( \operatorname{Arg}(\bar{z}_1) = -\frac{\pi}{4} \approx -0.785 \)[/tex]
6. [tex]\( z_1 + 2z_3 = 7 - 1i \)[/tex]
### Question 1
Solve [tex]\( z^3 - 2z - 4 = 0 \)[/tex] for the set of complex numbers.
#### Solution:
Given the hint [tex]\( z = 2 \)[/tex] is a solution to this equation, we need to find all roots of the polynomial.
The polynomial is:
[tex]\[ z^3 - 2z - 4 = 0 \][/tex]
We already know one root, [tex]\( z = 2 \)[/tex]. We can factor this polynomial using synthetic division or other methods, but the roots for the polynomial [tex]\( z^3 - 2z - 4 = 0 \)[/tex] are:
[tex]\[ z = 2, \, z = -1 - i, \, z = -1 + i \][/tex]
So, the solutions to the equation [tex]\( z^3 - 2z - 4 = 0 \)[/tex] are [tex]\( \{2, -1 - i, -1 + i\} \)[/tex].
### Question 2
Let [tex]\( z_1 = 1 + i \)[/tex], [tex]\( z_2 = 2 + i \)[/tex], and [tex]\( z_3 = 3 - i \)[/tex]. Calculate:
#### (a) [tex]\( z_1 z_2 \)[/tex]
To find the product of [tex]\( z_1 \)[/tex] and [tex]\( z_2 \)[/tex]:
[tex]\[ z_1 z_2 = (1+i)(2+i) \][/tex]
Expanding the product:
[tex]\[ (1+i)(2+i) = 1 \cdot 2 + 1 \cdot i + i \cdot 2 + i \cdot i \][/tex]
[tex]\[ = 2 + i + 2i + i^2 \][/tex]
[tex]\[ = 2 + 3i + (-1) \][/tex]
[tex]\[ = 1 + 3i \][/tex]
So, [tex]\( z_1 z_2 = 1 + 3i \)[/tex].
#### (b) [tex]\( |z_3| \)[/tex]
To find the magnitude of [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = 3 - i \][/tex]
The magnitude is given by:
[tex]\[ |z_3| = \sqrt{(\text{Re}(z_3))^2 + (\text{Im}(z_3))^2} \][/tex]
[tex]\[ = \sqrt{3^2 + (-1)^2} \][/tex]
[tex]\[ = \sqrt{9 + 1} \][/tex]
[tex]\[ = \sqrt{10} \][/tex]
[tex]\[ \approx 3.162 \][/tex]
So, [tex]\( |z_3| \approx 3.162 \)[/tex].
#### (c) [tex]\( \operatorname{Im}\left(\frac{z_1}{z_2}\right) \)[/tex]
To find the imaginary part of [tex]\( \frac{z_1}{z_2} \)[/tex]:
[tex]\[ z_1 = 1 + i \][/tex]
[tex]\[ z_2 = 2 + i \][/tex]
[tex]\[ \frac{z_1}{z_2} = \frac{1 + i}{2 + i} \][/tex]
To simplify, multiply the numerator and denominator by the conjugate of the denominator:
[tex]\[ \frac{1 + i}{2 + i} \cdot \frac{2 - i}{2 - i} \][/tex]
[tex]\[ = \frac{(1+i)(2-i)}{(2+i)(2-i)} \][/tex]
[tex]\[ = \frac{2 + i - 2i - i^2}{4 + 1} \][/tex]
[tex]\[ = \frac{2 - i - (-1)}{5} \][/tex]
[tex]\[ = \frac{3 - i}{5} \][/tex]
[tex]\[ = \frac{3}{5} - \frac{i}{5} \][/tex]
[tex]\[ = 0.6 - 0.2i \][/tex]
The imaginary part is:
[tex]\[ \operatorname{Im}\left(\frac{z_1}{z_2}\right) = -0.2 \][/tex]
So, [tex]\( \operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0.2 \)[/tex].
#### (d) [tex]\( \operatorname{Arg}(\bar{z}_1) \)[/tex]
To find the argument of the conjugate of [tex]\( z_1 \)[/tex]:
[tex]\[ z_1 = 1 + i \][/tex]
[tex]\[ \bar{z}_1 = 1 - i \][/tex]
The argument is the angle the complex number makes with the positive real axis.
For [tex]\( 1 - i \)[/tex], it is in the fourth quadrant:
[tex]\[ \theta = \arctan\left(\frac{-1}{1}\right) \][/tex]
[tex]\[ = \arctan(-1) \][/tex]
[tex]\[ = -\frac{\pi}{4} \][/tex]
So, [tex]\( \operatorname{Arg}(\bar{z}_1) = -\frac{\pi}{4} \approx -0.785 \)[/tex].
#### (e) [tex]\( z_1 + 2 z_3 \)[/tex]
To find [tex]\( z_1 + 2z_3 \)[/tex]:
[tex]\[ z_1 = 1 + i \][/tex]
[tex]\[ z_3 = 3 - i \][/tex]
[tex]\[ z_1 + 2z_3 = (1 + i) + 2(3 - i) \][/tex]
[tex]\[ = 1 + i + 6 - 2i \][/tex]
[tex]\[ = 7 - i \][/tex]
So, [tex]\( z_1 + 2z_3 = 7 - i \)[/tex].
Hence:
1. [tex]\[ \text{Solutions to } z^3 - 2z - 4 = 0: \{2, -1 - i, -1 + i\} \][/tex]
2. [tex]\( z_1 z_2 = 1 + 3i \)[/tex]
3. [tex]\( |z_3| \approx 3.162 \)[/tex]
4. [tex]\( \operatorname{Im}\left(\frac{z_1}{z_2}\right) = 0.2 \)[/tex]
5. [tex]\( \operatorname{Arg}(\bar{z}_1) = -\frac{\pi}{4} \approx -0.785 \)[/tex]
6. [tex]\( z_1 + 2z_3 = 7 - 1i \)[/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.