IDNLearn.com offers expert insights and community wisdom to answer your queries. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
To determine whether the collision is elastic, we need to analyze both the kinetic energy and the momentum of the system before and after the collision.
### Step-by-Step Solution:
1. Calculate initial kinetic energy:
First, we need to find the kinetic energy of each mass before the collision.
The formula for kinetic energy ([tex]\( KE \)[/tex]) is:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
- For the 3 kg mass:
[tex]\[ KE_{1\_initial} = \frac{1}{2} \times 3 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{1\_initial} = \frac{1}{2} \times 3 \times 16 \][/tex]
[tex]\[ KE_{1\_initial} = \frac{1}{2} \times 48 \][/tex]
[tex]\[ KE_{1\_initial} = 24 \, \text{J} \][/tex]
- For the 1 kg mass (initially stationary):
[tex]\[ KE_{2\_initial} = \frac{1}{2} \times 1 \, \text{kg} \times (0 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{2\_initial} = 0 \, \text{J} \][/tex]
Total initial kinetic energy:
[tex]\[ KE_{initial} = KE_{1\_initial} + KE_{2\_initial} \][/tex]
[tex]\[ KE_{initial} = 24 \, \text{J} + 0 \, \text{J} \][/tex]
[tex]\[ KE_{initial} = 24 \, \text{J} \][/tex]
2. Calculate final kinetic energy:
Now we find the kinetic energy of each mass after the collision.
- For the 3 kg mass (now moving at 2 m/s):
[tex]\[ KE_{1\_final} = \frac{1}{2} \times 3 \, \text{kg} \times (2 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{1\_final} = \frac{1}{2} \times 3 \times 4 \][/tex]
[tex]\[ KE_{1\_final} = \frac{1}{2} \times 12 \][/tex]
[tex]\[ KE_{1\_final} = 6 \, \text{J} \][/tex]
- For the 1 kg mass (now moving at 6 m/s):
[tex]\[ KE_{2\_final} = \frac{1}{2} \times 1 \, \text{kg} \times (6 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{2\_final} = \frac{1}{2} \times 1 \times 36 \][/tex]
[tex]\[ KE_{2\_final} = \frac{1}{2} \times 36 \][/tex]
[tex]\[ KE_{2\_final} = 18 \, \text{J} \][/tex]
Total final kinetic energy:
[tex]\[ KE_{final} = KE_{1\_final} + KE_{2\_final} \][/tex]
[tex]\[ KE_{final} = 6 \, \text{J} + 18 \, \text{J} \][/tex]
[tex]\[ KE_{final} = 24 \, \text{J} \][/tex]
3. Check if kinetic energy is conserved:
[tex]\[ KE_{initial} = KE_{final} \][/tex]
[tex]\[ 24 \, \text{J} = 24 \, \text{J} \][/tex]
Since the initial and final kinetic energies are equal, the kinetic energy is conserved.
4. Calculate initial and final momentum:
The formula for momentum ([tex]\( p \)[/tex]) is:
[tex]\[ p = mv \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
- Initial momentum:
[tex]\[ p_{initial} = (3 \, \text{kg} \times 4 \, \text{m/s}) + (1 \, \text{kg} \times 0 \, \text{m/s}) \][/tex]
[tex]\[ p_{initial} = 12 \, \text{kg} \cdot \text{m/s} \][/tex]
- Final momentum:
[tex]\[ p_{final} = (3 \, \text{kg} \times 2 \, \text{m/s}) + (1 \, \text{kg} \times 6 \, \text{m/s}) \][/tex]
[tex]\[ p_{final} = (3 \times 2) + (1 \times 6) \][/tex]
[tex]\[ p_{final} = 6 + 6 \][/tex]
[tex]\[ p_{final} = 12 \, \text{kg} \cdot \text{m/s} \][/tex]
5. Check if momentum is conserved:
[tex]\[ p_{initial} = p_{final} \][/tex]
[tex]\[ 12 \, \text{kg} \cdot \text{m/s} = 12 \, \text{kg} \cdot \text{m/s} \][/tex]
Since the initial and final momenta are equal, momentum is conserved.
### Conclusion:
Both kinetic energy and momentum are conserved in this collision. Therefore, the collision is elastic.
### Step-by-Step Solution:
1. Calculate initial kinetic energy:
First, we need to find the kinetic energy of each mass before the collision.
The formula for kinetic energy ([tex]\( KE \)[/tex]) is:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
- For the 3 kg mass:
[tex]\[ KE_{1\_initial} = \frac{1}{2} \times 3 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{1\_initial} = \frac{1}{2} \times 3 \times 16 \][/tex]
[tex]\[ KE_{1\_initial} = \frac{1}{2} \times 48 \][/tex]
[tex]\[ KE_{1\_initial} = 24 \, \text{J} \][/tex]
- For the 1 kg mass (initially stationary):
[tex]\[ KE_{2\_initial} = \frac{1}{2} \times 1 \, \text{kg} \times (0 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{2\_initial} = 0 \, \text{J} \][/tex]
Total initial kinetic energy:
[tex]\[ KE_{initial} = KE_{1\_initial} + KE_{2\_initial} \][/tex]
[tex]\[ KE_{initial} = 24 \, \text{J} + 0 \, \text{J} \][/tex]
[tex]\[ KE_{initial} = 24 \, \text{J} \][/tex]
2. Calculate final kinetic energy:
Now we find the kinetic energy of each mass after the collision.
- For the 3 kg mass (now moving at 2 m/s):
[tex]\[ KE_{1\_final} = \frac{1}{2} \times 3 \, \text{kg} \times (2 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{1\_final} = \frac{1}{2} \times 3 \times 4 \][/tex]
[tex]\[ KE_{1\_final} = \frac{1}{2} \times 12 \][/tex]
[tex]\[ KE_{1\_final} = 6 \, \text{J} \][/tex]
- For the 1 kg mass (now moving at 6 m/s):
[tex]\[ KE_{2\_final} = \frac{1}{2} \times 1 \, \text{kg} \times (6 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{2\_final} = \frac{1}{2} \times 1 \times 36 \][/tex]
[tex]\[ KE_{2\_final} = \frac{1}{2} \times 36 \][/tex]
[tex]\[ KE_{2\_final} = 18 \, \text{J} \][/tex]
Total final kinetic energy:
[tex]\[ KE_{final} = KE_{1\_final} + KE_{2\_final} \][/tex]
[tex]\[ KE_{final} = 6 \, \text{J} + 18 \, \text{J} \][/tex]
[tex]\[ KE_{final} = 24 \, \text{J} \][/tex]
3. Check if kinetic energy is conserved:
[tex]\[ KE_{initial} = KE_{final} \][/tex]
[tex]\[ 24 \, \text{J} = 24 \, \text{J} \][/tex]
Since the initial and final kinetic energies are equal, the kinetic energy is conserved.
4. Calculate initial and final momentum:
The formula for momentum ([tex]\( p \)[/tex]) is:
[tex]\[ p = mv \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
- Initial momentum:
[tex]\[ p_{initial} = (3 \, \text{kg} \times 4 \, \text{m/s}) + (1 \, \text{kg} \times 0 \, \text{m/s}) \][/tex]
[tex]\[ p_{initial} = 12 \, \text{kg} \cdot \text{m/s} \][/tex]
- Final momentum:
[tex]\[ p_{final} = (3 \, \text{kg} \times 2 \, \text{m/s}) + (1 \, \text{kg} \times 6 \, \text{m/s}) \][/tex]
[tex]\[ p_{final} = (3 \times 2) + (1 \times 6) \][/tex]
[tex]\[ p_{final} = 6 + 6 \][/tex]
[tex]\[ p_{final} = 12 \, \text{kg} \cdot \text{m/s} \][/tex]
5. Check if momentum is conserved:
[tex]\[ p_{initial} = p_{final} \][/tex]
[tex]\[ 12 \, \text{kg} \cdot \text{m/s} = 12 \, \text{kg} \cdot \text{m/s} \][/tex]
Since the initial and final momenta are equal, momentum is conserved.
### Conclusion:
Both kinetic energy and momentum are conserved in this collision. Therefore, the collision is elastic.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.