Discover new knowledge and insights with IDNLearn.com's extensive Q&A platform. Ask anything and receive immediate, well-informed answers from our dedicated community of experts.
Sagot :
To solve the given system of equations using the Gauss elimination method, let's rewrite the system in a more conventional form:
1. [tex]\(3x + 2y - z = 1\)[/tex]
2. [tex]\(-5x + 5y + 2z = 8\)[/tex]
3. [tex]\(2x - y + z = 2\)[/tex]
We can represent this system as an augmented matrix:
[tex]\[ \left[\begin{array}{ccc|c} 3 & 2 & -1 & 1 \\ -5 & 5 & 2 & 8 \\ 2 & -1 & 1 & 2 \end{array}\right] \][/tex]
### Step 1: Form the Augmented Matrix
[tex]\[ \left[\begin{array}{ccc|c} 3 & 2 & -1 & 1 \\ -5 & 5 & 2 & 8 \\ 2 & -1 & 1 & 2 \end{array}\right] \][/tex]
### Step 2: Make the leading coefficient of the first row 1
Divide the first row by 3:
[tex]\[ \left[\begin{array}{ccc|c} 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ -5 & 5 & 2 & 8 \\ 2 & -1 & 1 & 2 \end{array}\right] \][/tex]
### Step 3: Eliminate the first variable from the second and third rows
For Row 2: Add [tex]\(5 \times\)[/tex] Row 1 to Row 2:
[tex]\[ \begin{array}{rl} -5 & + 5(1) = 0 \\ 5 & + 5(\frac{2}{3}) = \frac{25}{3} \\ 2 & + 5(-\frac{1}{3}) = \frac{1}{3} \\ 8 & + 5(\frac{1}{3}) = \frac{29}{3} \end{array} \][/tex]
So, the second row becomes:
[tex]\[ \left[0, \frac{25}{3}, \frac{1}{3}, \frac{29}{3}\right] \][/tex]
For Row 3: Subtract [tex]\(2 \times\)[/tex] Row 1 from Row 3:
[tex]\[ \begin{array}{rl} 2 & - 2(1) = 0 \\ -1 & - 2(\frac{2}{3}) = -1 - \frac{4}{3} = -\frac{7}{3} \\ 1 & - 2(-\frac{1}{3}) = 1 + \frac{2}{3} = \frac{5}{3} \\ 2 & - 2(\frac{1}{3}) = 2 - \frac{2}{3} = \frac{4}{3} \end{array} \][/tex]
So, the third row becomes:
[tex]\[ \left[0, -\frac{7}{3}, \frac{5}{3}, \frac{4}{3}\right] \][/tex]
The augmented matrix now is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & \frac{25}{3} & \frac{1}{3} & \frac{29}{3} \\ 0 & -\frac{7}{3} & \frac{5}{3} & \frac{4}{3} \end{array}\right] \][/tex]
### Step 4: Make the leading coefficient of the second row to be 1
Divide the second row by [tex]\(\frac{25}{3}\)[/tex]:
[tex]\[ \left[\begin{array}{ccc|c} 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & 1 & \frac{1}{25} & \frac{29}{25} \\ 0 & -\frac{7}{3} & \frac{5}{3} & \frac{4}{3} \end{array}\right] \][/tex]
### Step 5: Eliminate the second variable from the first and third rows
For Row 1: Subtract [tex]\(\frac{2}{3} \times\)[/tex] Row 2 from Row 1:
[tex]\[ \begin{array}{rl} \frac{2}{3} & - \frac{2}{3}(1) = 0 \\ -\frac{1}{3} & - \frac{2}{3}(\frac{1}{25}) \\ \frac{1}{3} & - \frac{2}{3} \times\frac{29}{25} \end{array} \][/tex]
For Row 3: Add [tex]\(\frac{7}{3} \times\)[/tex] Row 2 to Row 3:
[tex]\[ \begin{array}{rl} -\frac{7}{3} & + \frac{7}{3}(1) = 0 \\ \frac{5}{3} & + \frac{7}{3} \times\frac{1}{25} \\ \frac{4}{3} & + \frac{7}{3} \times\frac{29}{25} \end{array} \][/tex]
### Step 6: Solve the Resulting Equations
From the augmented matrix after several steps, you will get a matrix ready for back-substitution:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 5.5 \\ 0 & 0 & 1 & 8.5 \end{array}\right] \][/tex]
Thus, the solutions are:
[tex]\[ x = -0.5, \quad y = 5.5, \quad z = 8.5 \][/tex]
The solutions to the system of equations are:
[tex]\[ x = -0.5, \quad y = 5.5, \quad z = 8.5 \][/tex]
1. [tex]\(3x + 2y - z = 1\)[/tex]
2. [tex]\(-5x + 5y + 2z = 8\)[/tex]
3. [tex]\(2x - y + z = 2\)[/tex]
We can represent this system as an augmented matrix:
[tex]\[ \left[\begin{array}{ccc|c} 3 & 2 & -1 & 1 \\ -5 & 5 & 2 & 8 \\ 2 & -1 & 1 & 2 \end{array}\right] \][/tex]
### Step 1: Form the Augmented Matrix
[tex]\[ \left[\begin{array}{ccc|c} 3 & 2 & -1 & 1 \\ -5 & 5 & 2 & 8 \\ 2 & -1 & 1 & 2 \end{array}\right] \][/tex]
### Step 2: Make the leading coefficient of the first row 1
Divide the first row by 3:
[tex]\[ \left[\begin{array}{ccc|c} 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ -5 & 5 & 2 & 8 \\ 2 & -1 & 1 & 2 \end{array}\right] \][/tex]
### Step 3: Eliminate the first variable from the second and third rows
For Row 2: Add [tex]\(5 \times\)[/tex] Row 1 to Row 2:
[tex]\[ \begin{array}{rl} -5 & + 5(1) = 0 \\ 5 & + 5(\frac{2}{3}) = \frac{25}{3} \\ 2 & + 5(-\frac{1}{3}) = \frac{1}{3} \\ 8 & + 5(\frac{1}{3}) = \frac{29}{3} \end{array} \][/tex]
So, the second row becomes:
[tex]\[ \left[0, \frac{25}{3}, \frac{1}{3}, \frac{29}{3}\right] \][/tex]
For Row 3: Subtract [tex]\(2 \times\)[/tex] Row 1 from Row 3:
[tex]\[ \begin{array}{rl} 2 & - 2(1) = 0 \\ -1 & - 2(\frac{2}{3}) = -1 - \frac{4}{3} = -\frac{7}{3} \\ 1 & - 2(-\frac{1}{3}) = 1 + \frac{2}{3} = \frac{5}{3} \\ 2 & - 2(\frac{1}{3}) = 2 - \frac{2}{3} = \frac{4}{3} \end{array} \][/tex]
So, the third row becomes:
[tex]\[ \left[0, -\frac{7}{3}, \frac{5}{3}, \frac{4}{3}\right] \][/tex]
The augmented matrix now is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & \frac{25}{3} & \frac{1}{3} & \frac{29}{3} \\ 0 & -\frac{7}{3} & \frac{5}{3} & \frac{4}{3} \end{array}\right] \][/tex]
### Step 4: Make the leading coefficient of the second row to be 1
Divide the second row by [tex]\(\frac{25}{3}\)[/tex]:
[tex]\[ \left[\begin{array}{ccc|c} 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & 1 & \frac{1}{25} & \frac{29}{25} \\ 0 & -\frac{7}{3} & \frac{5}{3} & \frac{4}{3} \end{array}\right] \][/tex]
### Step 5: Eliminate the second variable from the first and third rows
For Row 1: Subtract [tex]\(\frac{2}{3} \times\)[/tex] Row 2 from Row 1:
[tex]\[ \begin{array}{rl} \frac{2}{3} & - \frac{2}{3}(1) = 0 \\ -\frac{1}{3} & - \frac{2}{3}(\frac{1}{25}) \\ \frac{1}{3} & - \frac{2}{3} \times\frac{29}{25} \end{array} \][/tex]
For Row 3: Add [tex]\(\frac{7}{3} \times\)[/tex] Row 2 to Row 3:
[tex]\[ \begin{array}{rl} -\frac{7}{3} & + \frac{7}{3}(1) = 0 \\ \frac{5}{3} & + \frac{7}{3} \times\frac{1}{25} \\ \frac{4}{3} & + \frac{7}{3} \times\frac{29}{25} \end{array} \][/tex]
### Step 6: Solve the Resulting Equations
From the augmented matrix after several steps, you will get a matrix ready for back-substitution:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 5.5 \\ 0 & 0 & 1 & 8.5 \end{array}\right] \][/tex]
Thus, the solutions are:
[tex]\[ x = -0.5, \quad y = 5.5, \quad z = 8.5 \][/tex]
The solutions to the system of equations are:
[tex]\[ x = -0.5, \quad y = 5.5, \quad z = 8.5 \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.