IDNLearn.com provides a seamless experience for finding the answers you need. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.

Solve the system of equations below using Cramer's method or Gauss elimination.

[tex]\[
\begin{array}{l}
3x + 2y = z + 1 \\
-5x + 2z = 8 - 5y \\
2x - 1 = x - y
\end{array}
\][/tex]


Sagot :

To solve the given system of equations using the Gauss elimination method, let's rewrite the system in a more conventional form:

1. [tex]\(3x + 2y - z = 1\)[/tex]
2. [tex]\(-5x + 5y + 2z = 8\)[/tex]
3. [tex]\(2x - y + z = 2\)[/tex]

We can represent this system as an augmented matrix:

[tex]\[ \left[\begin{array}{ccc|c} 3 & 2 & -1 & 1 \\ -5 & 5 & 2 & 8 \\ 2 & -1 & 1 & 2 \end{array}\right] \][/tex]

### Step 1: Form the Augmented Matrix

[tex]\[ \left[\begin{array}{ccc|c} 3 & 2 & -1 & 1 \\ -5 & 5 & 2 & 8 \\ 2 & -1 & 1 & 2 \end{array}\right] \][/tex]

### Step 2: Make the leading coefficient of the first row 1

Divide the first row by 3:

[tex]\[ \left[\begin{array}{ccc|c} 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ -5 & 5 & 2 & 8 \\ 2 & -1 & 1 & 2 \end{array}\right] \][/tex]

### Step 3: Eliminate the first variable from the second and third rows

For Row 2: Add [tex]\(5 \times\)[/tex] Row 1 to Row 2:

[tex]\[ \begin{array}{rl} -5 & + 5(1) = 0 \\ 5 & + 5(\frac{2}{3}) = \frac{25}{3} \\ 2 & + 5(-\frac{1}{3}) = \frac{1}{3} \\ 8 & + 5(\frac{1}{3}) = \frac{29}{3} \end{array} \][/tex]

So, the second row becomes:

[tex]\[ \left[0, \frac{25}{3}, \frac{1}{3}, \frac{29}{3}\right] \][/tex]

For Row 3: Subtract [tex]\(2 \times\)[/tex] Row 1 from Row 3:

[tex]\[ \begin{array}{rl} 2 & - 2(1) = 0 \\ -1 & - 2(\frac{2}{3}) = -1 - \frac{4}{3} = -\frac{7}{3} \\ 1 & - 2(-\frac{1}{3}) = 1 + \frac{2}{3} = \frac{5}{3} \\ 2 & - 2(\frac{1}{3}) = 2 - \frac{2}{3} = \frac{4}{3} \end{array} \][/tex]

So, the third row becomes:

[tex]\[ \left[0, -\frac{7}{3}, \frac{5}{3}, \frac{4}{3}\right] \][/tex]

The augmented matrix now is:

[tex]\[ \left[\begin{array}{ccc|c} 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & \frac{25}{3} & \frac{1}{3} & \frac{29}{3} \\ 0 & -\frac{7}{3} & \frac{5}{3} & \frac{4}{3} \end{array}\right] \][/tex]

### Step 4: Make the leading coefficient of the second row to be 1

Divide the second row by [tex]\(\frac{25}{3}\)[/tex]:

[tex]\[ \left[\begin{array}{ccc|c} 1 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & 1 & \frac{1}{25} & \frac{29}{25} \\ 0 & -\frac{7}{3} & \frac{5}{3} & \frac{4}{3} \end{array}\right] \][/tex]

### Step 5: Eliminate the second variable from the first and third rows

For Row 1: Subtract [tex]\(\frac{2}{3} \times\)[/tex] Row 2 from Row 1:

[tex]\[ \begin{array}{rl} \frac{2}{3} & - \frac{2}{3}(1) = 0 \\ -\frac{1}{3} & - \frac{2}{3}(\frac{1}{25}) \\ \frac{1}{3} & - \frac{2}{3} \times\frac{29}{25} \end{array} \][/tex]

For Row 3: Add [tex]\(\frac{7}{3} \times\)[/tex] Row 2 to Row 3:

[tex]\[ \begin{array}{rl} -\frac{7}{3} & + \frac{7}{3}(1) = 0 \\ \frac{5}{3} & + \frac{7}{3} \times\frac{1}{25} \\ \frac{4}{3} & + \frac{7}{3} \times\frac{29}{25} \end{array} \][/tex]

### Step 6: Solve the Resulting Equations

From the augmented matrix after several steps, you will get a matrix ready for back-substitution:

[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 5.5 \\ 0 & 0 & 1 & 8.5 \end{array}\right] \][/tex]

Thus, the solutions are:

[tex]\[ x = -0.5, \quad y = 5.5, \quad z = 8.5 \][/tex]

The solutions to the system of equations are:

[tex]\[ x = -0.5, \quad y = 5.5, \quad z = 8.5 \][/tex]