IDNLearn.com is designed to help you find accurate answers with ease. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.
Sagot :
Certainly, let’s break down the solution step-by-step.
We are given:
[tex]\[ \cos \alpha = \frac{-12}{13} \][/tex]
[tex]\[ \cot \beta = \frac{24}{7} \][/tex]
[tex]\(\alpha\)[/tex] is in Quadrant II and [tex]\(\beta\)[/tex] is in Quadrant III.
We need to find [tex]\(\sin(\alpha+\beta)\)[/tex], [tex]\(\cos(\alpha+\beta)\)[/tex], and [tex]\(\tan(\alpha+\beta)\)[/tex].
### Step 1: Find [tex]\(\sin \alpha\)[/tex]
Since [tex]\(\alpha\)[/tex] is in Quadrant II, [tex]\(\sin \alpha > 0\)[/tex].
We know that:
[tex]\[ \sin^2 \alpha + \cos^2 \alpha = 1 \][/tex]
[tex]\[ \sin^2 \alpha = 1 - \cos^2 \alpha \][/tex]
Substitute the given value of [tex]\(\cos \alpha\)[/tex]:
[tex]\[ \sin^2 \alpha = 1 - \left(\frac{-12}{13}\right)^2 \][/tex]
[tex]\[ \sin^2 \alpha = 1 - \frac{144}{169} \][/tex]
[tex]\[ \sin^2 \alpha = \frac{169 - 144}{169} \][/tex]
[tex]\[ \sin^2 \alpha = \frac{25}{169} \][/tex]
[tex]\[ \sin \alpha = \frac{5}{13} \][/tex]
[tex]\[ \sin \alpha = \sqrt{\frac{25}{169}} \][/tex]
Since [tex]\(\alpha\)[/tex] is in Quadrant II, [tex]\(\sin \alpha\)[/tex] is positive:
[tex]\[ \sin \alpha = \frac{5}{13} \approx 0.3846 \][/tex]
### Step 2: Find [tex]\(\sin \beta\)[/tex] and [tex]\(\cos \beta\)[/tex]
Given [tex]\(\cot \beta = \frac{24}{7}\)[/tex], which indicates [tex]\(\beta\)[/tex] is in Quadrant III. In this quadrant, both [tex]\(\sin \beta < 0\)[/tex] and [tex]\(\cos \beta < 0\)[/tex].
[tex]\[ \tan \beta = \frac{1}{\cot \beta} = \frac{7}{24} \][/tex]
[tex]\[ \tan \beta = \frac{\sin \beta}{\cos \beta} \][/tex]
Using the identity [tex]\(\tan^2 \beta + 1 = \frac{1}{\cos^2 \beta}\)[/tex]:
[tex]\[ \tan^2 \beta = \left(\frac{7}{24}\right)^2 = \frac{49}{576} \][/tex]
[tex]\[ 1 + \tan^2 \beta = 1 + \frac{49}{576} = \frac{576 + 49}{576} = \frac{625}{576} \][/tex]
[tex]\[ \cos^2 \beta = \frac{1}{1 + \tan^2 \beta} = \frac{576}{625} \][/tex]
[tex]\[ \cos \beta = \sqrt{\frac{576}{625}} = \frac{24}{25} \][/tex]
Since [tex]\(\cos \beta\)[/tex] is negative in Quadrant III,
[tex]\[ \cos \beta = -0.96 \][/tex]
Now to find [tex]\(\sin \beta\)[/tex]:
[tex]\[ \tan \beta = \frac{\sin \beta}{\cos \beta} \Rightarrow \sin \beta = \tan \beta \cdot \cos \beta \][/tex]
[tex]\[ \sin \beta = \frac{7}{24} \cdot -0.96 = -0.28 \][/tex]
### Step 3: Finding [tex]\(\sin (\alpha + \beta)\)[/tex], [tex]\(\cos (\alpha + \beta)\)[/tex], and [tex]\(\tan (\alpha + \beta)\)[/tex]
Using the sum identities,
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
[tex]\[ \sin (\alpha + \beta) = \left(\frac{5}{13}\right) \left(-0.96\right) + \left(-\frac{12}{13}\right)\left(-0.28\right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = -0.627 + 0.269 = -0.6277 \][/tex]
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
[tex]\[ \cos (\alpha + \beta) = \left(-\frac{12}{13}\right) \left(-0.96\right) - \left(\frac{5}{13}\right) \left(-0.28\right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = 0.8884 + 0.1077 = 0.7784 \][/tex]
Finally, we find [tex]\(\tan (\alpha + \beta)\)[/tex] using the formula:
[tex]\[ \tan (\alpha + \beta) = \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} \][/tex]
[tex]\[ \tan (\alpha + \beta) = \frac{-0.6277}{0.7784} \approx -0.8063 \][/tex]
Thus, the values are:
[tex]\[ \sin (\alpha + \beta) = -0.6277 \][/tex]
[tex]\[ \cos (\alpha + \beta) = 0.7784 \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.8063 \][/tex]
These are the required trigonometric values.
We are given:
[tex]\[ \cos \alpha = \frac{-12}{13} \][/tex]
[tex]\[ \cot \beta = \frac{24}{7} \][/tex]
[tex]\(\alpha\)[/tex] is in Quadrant II and [tex]\(\beta\)[/tex] is in Quadrant III.
We need to find [tex]\(\sin(\alpha+\beta)\)[/tex], [tex]\(\cos(\alpha+\beta)\)[/tex], and [tex]\(\tan(\alpha+\beta)\)[/tex].
### Step 1: Find [tex]\(\sin \alpha\)[/tex]
Since [tex]\(\alpha\)[/tex] is in Quadrant II, [tex]\(\sin \alpha > 0\)[/tex].
We know that:
[tex]\[ \sin^2 \alpha + \cos^2 \alpha = 1 \][/tex]
[tex]\[ \sin^2 \alpha = 1 - \cos^2 \alpha \][/tex]
Substitute the given value of [tex]\(\cos \alpha\)[/tex]:
[tex]\[ \sin^2 \alpha = 1 - \left(\frac{-12}{13}\right)^2 \][/tex]
[tex]\[ \sin^2 \alpha = 1 - \frac{144}{169} \][/tex]
[tex]\[ \sin^2 \alpha = \frac{169 - 144}{169} \][/tex]
[tex]\[ \sin^2 \alpha = \frac{25}{169} \][/tex]
[tex]\[ \sin \alpha = \frac{5}{13} \][/tex]
[tex]\[ \sin \alpha = \sqrt{\frac{25}{169}} \][/tex]
Since [tex]\(\alpha\)[/tex] is in Quadrant II, [tex]\(\sin \alpha\)[/tex] is positive:
[tex]\[ \sin \alpha = \frac{5}{13} \approx 0.3846 \][/tex]
### Step 2: Find [tex]\(\sin \beta\)[/tex] and [tex]\(\cos \beta\)[/tex]
Given [tex]\(\cot \beta = \frac{24}{7}\)[/tex], which indicates [tex]\(\beta\)[/tex] is in Quadrant III. In this quadrant, both [tex]\(\sin \beta < 0\)[/tex] and [tex]\(\cos \beta < 0\)[/tex].
[tex]\[ \tan \beta = \frac{1}{\cot \beta} = \frac{7}{24} \][/tex]
[tex]\[ \tan \beta = \frac{\sin \beta}{\cos \beta} \][/tex]
Using the identity [tex]\(\tan^2 \beta + 1 = \frac{1}{\cos^2 \beta}\)[/tex]:
[tex]\[ \tan^2 \beta = \left(\frac{7}{24}\right)^2 = \frac{49}{576} \][/tex]
[tex]\[ 1 + \tan^2 \beta = 1 + \frac{49}{576} = \frac{576 + 49}{576} = \frac{625}{576} \][/tex]
[tex]\[ \cos^2 \beta = \frac{1}{1 + \tan^2 \beta} = \frac{576}{625} \][/tex]
[tex]\[ \cos \beta = \sqrt{\frac{576}{625}} = \frac{24}{25} \][/tex]
Since [tex]\(\cos \beta\)[/tex] is negative in Quadrant III,
[tex]\[ \cos \beta = -0.96 \][/tex]
Now to find [tex]\(\sin \beta\)[/tex]:
[tex]\[ \tan \beta = \frac{\sin \beta}{\cos \beta} \Rightarrow \sin \beta = \tan \beta \cdot \cos \beta \][/tex]
[tex]\[ \sin \beta = \frac{7}{24} \cdot -0.96 = -0.28 \][/tex]
### Step 3: Finding [tex]\(\sin (\alpha + \beta)\)[/tex], [tex]\(\cos (\alpha + \beta)\)[/tex], and [tex]\(\tan (\alpha + \beta)\)[/tex]
Using the sum identities,
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
[tex]\[ \sin (\alpha + \beta) = \left(\frac{5}{13}\right) \left(-0.96\right) + \left(-\frac{12}{13}\right)\left(-0.28\right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = -0.627 + 0.269 = -0.6277 \][/tex]
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
[tex]\[ \cos (\alpha + \beta) = \left(-\frac{12}{13}\right) \left(-0.96\right) - \left(\frac{5}{13}\right) \left(-0.28\right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = 0.8884 + 0.1077 = 0.7784 \][/tex]
Finally, we find [tex]\(\tan (\alpha + \beta)\)[/tex] using the formula:
[tex]\[ \tan (\alpha + \beta) = \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} \][/tex]
[tex]\[ \tan (\alpha + \beta) = \frac{-0.6277}{0.7784} \approx -0.8063 \][/tex]
Thus, the values are:
[tex]\[ \sin (\alpha + \beta) = -0.6277 \][/tex]
[tex]\[ \cos (\alpha + \beta) = 0.7784 \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.8063 \][/tex]
These are the required trigonometric values.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.