Discover a wealth of knowledge and get your questions answered at IDNLearn.com. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.
Sagot :
To solve the limit [tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex], let's go through the process step-by-step.
First, observe the form of the given expression:
[tex]\[ \sqrt{x + a} - \sqrt{x} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, both [tex]\(\sqrt{x + a}\)[/tex] and [tex]\(\sqrt{x}\)[/tex] also approach infinity. Therefore, we have an indeterminate form of type [tex]\(\infty - \infty\)[/tex]. To resolve this, we will rationalize the expression by multiplying and dividing by the conjugate of the expression [tex]\(\sqrt{x + a} - \sqrt{x}\)[/tex]. The conjugate is [tex]\(\sqrt{x + a} + \sqrt{x}\)[/tex].
Now, let’s proceed with the rationalization:
[tex]\[ \sqrt{x + a} - \sqrt{x} = \frac{(\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x})}{\sqrt{x + a} + \sqrt{x}} \][/tex]
Using the difference of squares formula, the numerator becomes:
[tex]\[ (\sqrt{x + a})^2 - (\sqrt{x})^2 = (x + a) - x = a \][/tex]
Thus, the expression is transformed into:
[tex]\[ \sqrt{x + a} - \sqrt{x} = \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
Now, we need to find the limit as [tex]\(x\)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x + a}\)[/tex] and [tex]\(\sqrt{x}\)[/tex] both behave similarly because [tex]\(a\)[/tex] is a constant and does not affect the leading behavior as [tex]\(x\)[/tex] grows very large. Therefore:
[tex]\[ \lim_{x \to \infty} \left(\sqrt{x + a}\right) = \lim_{x \to \infty} \left(\sqrt{x}\right) \][/tex]
So the expression in the denominator becomes approximately:
[tex]\[ \sqrt{x + a} + \sqrt{x} \approx 2\sqrt{x} \][/tex]
Substituting this into our limit gives:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x+a} + \sqrt{x}} \approx \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
Now, simplifying further:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x}\)[/tex] also approaches infinity, making the whole fraction approach zero:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} = 0 \][/tex]
Thus, the limit is:
[tex]\[ \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}) = 0 \][/tex]
First, observe the form of the given expression:
[tex]\[ \sqrt{x + a} - \sqrt{x} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, both [tex]\(\sqrt{x + a}\)[/tex] and [tex]\(\sqrt{x}\)[/tex] also approach infinity. Therefore, we have an indeterminate form of type [tex]\(\infty - \infty\)[/tex]. To resolve this, we will rationalize the expression by multiplying and dividing by the conjugate of the expression [tex]\(\sqrt{x + a} - \sqrt{x}\)[/tex]. The conjugate is [tex]\(\sqrt{x + a} + \sqrt{x}\)[/tex].
Now, let’s proceed with the rationalization:
[tex]\[ \sqrt{x + a} - \sqrt{x} = \frac{(\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x})}{\sqrt{x + a} + \sqrt{x}} \][/tex]
Using the difference of squares formula, the numerator becomes:
[tex]\[ (\sqrt{x + a})^2 - (\sqrt{x})^2 = (x + a) - x = a \][/tex]
Thus, the expression is transformed into:
[tex]\[ \sqrt{x + a} - \sqrt{x} = \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
Now, we need to find the limit as [tex]\(x\)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x + a}\)[/tex] and [tex]\(\sqrt{x}\)[/tex] both behave similarly because [tex]\(a\)[/tex] is a constant and does not affect the leading behavior as [tex]\(x\)[/tex] grows very large. Therefore:
[tex]\[ \lim_{x \to \infty} \left(\sqrt{x + a}\right) = \lim_{x \to \infty} \left(\sqrt{x}\right) \][/tex]
So the expression in the denominator becomes approximately:
[tex]\[ \sqrt{x + a} + \sqrt{x} \approx 2\sqrt{x} \][/tex]
Substituting this into our limit gives:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x+a} + \sqrt{x}} \approx \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
Now, simplifying further:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x}\)[/tex] also approaches infinity, making the whole fraction approach zero:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} = 0 \][/tex]
Thus, the limit is:
[tex]\[ \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}) = 0 \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.