IDNLearn.com: Where your questions meet expert advice and community insights. Get comprehensive and trustworthy answers to all your questions from our knowledgeable community members.

A particle moving in a straight line with uniform deceleration has a velocity of [tex]$40 \, \text{m/s}$[/tex] at a point [tex]\( P \)[/tex], 20 meters short of a point [tex]\( Q \)[/tex] and comes to rest at a point [tex]\( R \)[/tex], where [tex]QR = 50 \, \text{m}[/tex]. Calculate the:

A. Distance [tex]\( PQ \)[/tex]

B. Time taken to cover [tex]\( PQ \)[/tex]


Sagot :

Of course! Let’s solve the problem step-by-step.

Given:
- The velocity of the particle at point [tex]\(P\)[/tex] is [tex]\(40 \, \text{m/s}\)[/tex].
- The particle comes to rest at point [tex]\(R\)[/tex], so the velocity at [tex]\(R\)[/tex] is [tex]\(0 \, \text{m/s}\)[/tex].
- The distance from point [tex]\(Q\)[/tex] to point [tex]\(R\)[/tex] is [tex]\(50 \, \text{m}\)[/tex].

1. Finding the deceleration:

Let’s denote the deceleration by [tex]\(a\)[/tex].

We can use the kinematic equation that relates velocity, acceleration, and distance:
[tex]\[v^2 = u^2 + 2as\][/tex]

Here:
- [tex]\(v\)[/tex] is the final velocity,
- [tex]\(u\)[/tex] is the initial velocity,
- [tex]\(a\)[/tex] is the acceleration (deceleration, in this case),
- [tex]\(s\)[/tex] is the displacement.

At point [tex]\(R\)[/tex]:
[tex]\[0 = (40)^2 + 2a(70)\][/tex]
(The distance [tex]\(PQ + QR = 20 \text{ m} + 50 \text{ m} = 70 \text{ m}\)[/tex])

[tex]\[0 = 1600 + 140a\][/tex]

Solving for [tex]\(a\)[/tex]:
[tex]\[140a = -1600\][/tex]

[tex]\[a = \frac{-1600}{140} = -\frac{1600}{140} \approx -11.43 \, \text{m/s}^2\][/tex]

Thus, the deceleration is [tex]\(11.43 \, \text{m/s}^2\)[/tex].

2. Finding the distance [tex]\(PQ\)[/tex]:

Using the same kinematic equation:

[tex]\[v^2 = u^2 + 2as\][/tex]

- [tex]\(v = 0 \, \text{m/s}\)[/tex] (velocity at [tex]\(Q\)[/tex]),
- [tex]\(u = 40 \, \text{m/s}\)[/tex] (velocity at [tex]\(P\)[/tex]),
- [tex]\(a = -11.43 \, \text{m/s}^2\)[/tex],
- [tex]\(s = PQ\)[/tex] (distance we want to find).

Rearranging the equation:
[tex]\[0 = (40)^2 + 2(-11.43)s\][/tex]

[tex]\[0 = 1600 - 22.86s\][/tex]

[tex]\[22.86s = 1600\][/tex]

[tex]\[s = \frac{1600}{22.86} \approx 70 \, \text{m}\][/tex]

Thus, the distance [tex]\(PQ\)[/tex] is approximately [tex]\(70 \, \text{m}\)[/tex].

3. Finding the time taken to cover [tex]\(PQ\)[/tex]:

We can use another kinematic equation to find the time:

[tex]\[v = u + at\][/tex]

Where:
- [tex]\(v = 0 \, \text{m/s}\)[/tex] (velocity at [tex]\(Q\)[/tex]),
- [tex]\(u = 40 \, \text{m/s}\)[/tex] (velocity at [tex]\(P\)[/tex]),
- [tex]\(a = -11.43 \, \text{m/s}^2\)[/tex],
- [tex]\(t\)[/tex] is the time taken to travel from [tex]\(P\)[/tex] to [tex]\(Q\)[/tex].

Rearranging the equation:
[tex]\[0 = 40 + (-11.43)t\][/tex]

[tex]\[11.43t = 40\][/tex]

[tex]\[t = \frac{40}{11.43} \approx 3.5 \, \text{seconds}\][/tex]

Therefore, the time taken to cover [tex]\(PQ\)[/tex] is approximately [tex]\(3.5\)[/tex] seconds.

In summary:
a. The distance [tex]\(PQ\)[/tex] is approximately [tex]\(70\)[/tex] meters.
b. The time taken to cover [tex]\(PQ\)[/tex] is approximately [tex]\(3.5\)[/tex] seconds.