IDNLearn.com provides a comprehensive solution for all your question and answer needs. Join our knowledgeable community and get detailed, reliable answers to all your questions.
Sagot :
To solve the polynomial equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] using U-Substitution, follow these steps:
1. Substitute [tex]\(u\)[/tex] for [tex]\(s^2\)[/tex]:
Let [tex]\(u = s^2\)[/tex]. Then, the equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] becomes:
[tex]\[ 2u^2 + 13u + 15 = 0 \][/tex]
2. Solve the quadratic equation [tex]\(2u^2 + 13u + 15 = 0\)[/tex] for [tex]\(u\)[/tex]:
A quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex] can be solved using the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In our case, [tex]\(a = 2\)[/tex], [tex]\(b = 13\)[/tex], and [tex]\(c = 15\)[/tex]. Plug these values into the quadratic formula:
[tex]\[ u = \frac{-13 \pm \sqrt{13^2 - 4 \cdot 2 \cdot 15}}{2 \cdot 2} \][/tex]
Calculate the discriminant:
[tex]\[ \Delta = 13^2 - 4 \cdot 2 \cdot 15 = 169 - 120 = 49 \][/tex]
Now, solve for [tex]\(u\)[/tex]:
[tex]\[ u = \frac{-13 \pm \sqrt{49}}{4} \][/tex]
3. Find the roots [tex]\(u_1\)[/tex] and [tex]\(u_2\)[/tex]:
The square root of 49 is 7, so:
[tex]\[ u = \frac{-13 \pm 7}{4} \][/tex]
This gives us two solutions:
[tex]\[ u_1 = \frac{-13 + 7}{4} = \frac{-6}{4} = -\frac{3}{2} \][/tex]
[tex]\[ u_2 = \frac{-13 - 7}{4} = \frac{-20}{4} = -5 \][/tex]
4. Back-substitute for [tex]\(s\)[/tex]:
Recall that [tex]\(u = s^2\)[/tex]. Therefore, we need to solve for [tex]\(s\)[/tex] from [tex]\(s^2 = u\)[/tex]. We have two [tex]\(u\)[/tex] values:
[tex]\[ s^2 = -\frac{3}{2} \quad \text{and} \quad s^2 = -5 \][/tex]
5. Check the validity of [tex]\(s^2 = -\frac{3}{2}\)[/tex] and [tex]\(s^2 = -5\)[/tex]:
Since both [tex]\(-\frac{3}{2}\)[/tex] and [tex]\(-5\)[/tex] are negative numbers, and the square of a real number cannot be negative, there are no real solutions for [tex]\(s\)[/tex].
Therefore, the polynomial equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] does not have any real solutions.
1. Substitute [tex]\(u\)[/tex] for [tex]\(s^2\)[/tex]:
Let [tex]\(u = s^2\)[/tex]. Then, the equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] becomes:
[tex]\[ 2u^2 + 13u + 15 = 0 \][/tex]
2. Solve the quadratic equation [tex]\(2u^2 + 13u + 15 = 0\)[/tex] for [tex]\(u\)[/tex]:
A quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex] can be solved using the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In our case, [tex]\(a = 2\)[/tex], [tex]\(b = 13\)[/tex], and [tex]\(c = 15\)[/tex]. Plug these values into the quadratic formula:
[tex]\[ u = \frac{-13 \pm \sqrt{13^2 - 4 \cdot 2 \cdot 15}}{2 \cdot 2} \][/tex]
Calculate the discriminant:
[tex]\[ \Delta = 13^2 - 4 \cdot 2 \cdot 15 = 169 - 120 = 49 \][/tex]
Now, solve for [tex]\(u\)[/tex]:
[tex]\[ u = \frac{-13 \pm \sqrt{49}}{4} \][/tex]
3. Find the roots [tex]\(u_1\)[/tex] and [tex]\(u_2\)[/tex]:
The square root of 49 is 7, so:
[tex]\[ u = \frac{-13 \pm 7}{4} \][/tex]
This gives us two solutions:
[tex]\[ u_1 = \frac{-13 + 7}{4} = \frac{-6}{4} = -\frac{3}{2} \][/tex]
[tex]\[ u_2 = \frac{-13 - 7}{4} = \frac{-20}{4} = -5 \][/tex]
4. Back-substitute for [tex]\(s\)[/tex]:
Recall that [tex]\(u = s^2\)[/tex]. Therefore, we need to solve for [tex]\(s\)[/tex] from [tex]\(s^2 = u\)[/tex]. We have two [tex]\(u\)[/tex] values:
[tex]\[ s^2 = -\frac{3}{2} \quad \text{and} \quad s^2 = -5 \][/tex]
5. Check the validity of [tex]\(s^2 = -\frac{3}{2}\)[/tex] and [tex]\(s^2 = -5\)[/tex]:
Since both [tex]\(-\frac{3}{2}\)[/tex] and [tex]\(-5\)[/tex] are negative numbers, and the square of a real number cannot be negative, there are no real solutions for [tex]\(s\)[/tex].
Therefore, the polynomial equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] does not have any real solutions.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.