IDNLearn.com offers a unique blend of expert answers and community-driven insights. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.
Sagot :
To solve the polynomial equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] using U-Substitution, follow these steps:
1. Substitute [tex]\(u\)[/tex] for [tex]\(s^2\)[/tex]:
Let [tex]\(u = s^2\)[/tex]. Then, the equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] becomes:
[tex]\[ 2u^2 + 13u + 15 = 0 \][/tex]
2. Solve the quadratic equation [tex]\(2u^2 + 13u + 15 = 0\)[/tex] for [tex]\(u\)[/tex]:
A quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex] can be solved using the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In our case, [tex]\(a = 2\)[/tex], [tex]\(b = 13\)[/tex], and [tex]\(c = 15\)[/tex]. Plug these values into the quadratic formula:
[tex]\[ u = \frac{-13 \pm \sqrt{13^2 - 4 \cdot 2 \cdot 15}}{2 \cdot 2} \][/tex]
Calculate the discriminant:
[tex]\[ \Delta = 13^2 - 4 \cdot 2 \cdot 15 = 169 - 120 = 49 \][/tex]
Now, solve for [tex]\(u\)[/tex]:
[tex]\[ u = \frac{-13 \pm \sqrt{49}}{4} \][/tex]
3. Find the roots [tex]\(u_1\)[/tex] and [tex]\(u_2\)[/tex]:
The square root of 49 is 7, so:
[tex]\[ u = \frac{-13 \pm 7}{4} \][/tex]
This gives us two solutions:
[tex]\[ u_1 = \frac{-13 + 7}{4} = \frac{-6}{4} = -\frac{3}{2} \][/tex]
[tex]\[ u_2 = \frac{-13 - 7}{4} = \frac{-20}{4} = -5 \][/tex]
4. Back-substitute for [tex]\(s\)[/tex]:
Recall that [tex]\(u = s^2\)[/tex]. Therefore, we need to solve for [tex]\(s\)[/tex] from [tex]\(s^2 = u\)[/tex]. We have two [tex]\(u\)[/tex] values:
[tex]\[ s^2 = -\frac{3}{2} \quad \text{and} \quad s^2 = -5 \][/tex]
5. Check the validity of [tex]\(s^2 = -\frac{3}{2}\)[/tex] and [tex]\(s^2 = -5\)[/tex]:
Since both [tex]\(-\frac{3}{2}\)[/tex] and [tex]\(-5\)[/tex] are negative numbers, and the square of a real number cannot be negative, there are no real solutions for [tex]\(s\)[/tex].
Therefore, the polynomial equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] does not have any real solutions.
1. Substitute [tex]\(u\)[/tex] for [tex]\(s^2\)[/tex]:
Let [tex]\(u = s^2\)[/tex]. Then, the equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] becomes:
[tex]\[ 2u^2 + 13u + 15 = 0 \][/tex]
2. Solve the quadratic equation [tex]\(2u^2 + 13u + 15 = 0\)[/tex] for [tex]\(u\)[/tex]:
A quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex] can be solved using the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In our case, [tex]\(a = 2\)[/tex], [tex]\(b = 13\)[/tex], and [tex]\(c = 15\)[/tex]. Plug these values into the quadratic formula:
[tex]\[ u = \frac{-13 \pm \sqrt{13^2 - 4 \cdot 2 \cdot 15}}{2 \cdot 2} \][/tex]
Calculate the discriminant:
[tex]\[ \Delta = 13^2 - 4 \cdot 2 \cdot 15 = 169 - 120 = 49 \][/tex]
Now, solve for [tex]\(u\)[/tex]:
[tex]\[ u = \frac{-13 \pm \sqrt{49}}{4} \][/tex]
3. Find the roots [tex]\(u_1\)[/tex] and [tex]\(u_2\)[/tex]:
The square root of 49 is 7, so:
[tex]\[ u = \frac{-13 \pm 7}{4} \][/tex]
This gives us two solutions:
[tex]\[ u_1 = \frac{-13 + 7}{4} = \frac{-6}{4} = -\frac{3}{2} \][/tex]
[tex]\[ u_2 = \frac{-13 - 7}{4} = \frac{-20}{4} = -5 \][/tex]
4. Back-substitute for [tex]\(s\)[/tex]:
Recall that [tex]\(u = s^2\)[/tex]. Therefore, we need to solve for [tex]\(s\)[/tex] from [tex]\(s^2 = u\)[/tex]. We have two [tex]\(u\)[/tex] values:
[tex]\[ s^2 = -\frac{3}{2} \quad \text{and} \quad s^2 = -5 \][/tex]
5. Check the validity of [tex]\(s^2 = -\frac{3}{2}\)[/tex] and [tex]\(s^2 = -5\)[/tex]:
Since both [tex]\(-\frac{3}{2}\)[/tex] and [tex]\(-5\)[/tex] are negative numbers, and the square of a real number cannot be negative, there are no real solutions for [tex]\(s\)[/tex].
Therefore, the polynomial equation [tex]\(2s^4 + 13s^2 + 15 = 0\)[/tex] does not have any real solutions.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.