IDNLearn.com provides a collaborative environment for finding accurate answers. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.
Sagot :
To determine the force constant of a spiral spring using the given data, you must first find the weights corresponding to each mass and then calculate the force constant using Hooke's law. Here is a step-by-step solution to your problem:
1. List the given data:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Mass } m \, (g) & \text{Weight } W \, (N) & \text{Extension } e \, (cm) \\ \hline 50 & & 6.5 \\ \hline 100 & & 11.0 \\ \hline 150 & & 15.0 \\ \hline 200 & & 20.0 \\ \hline 250 & & 25.0 \\ \hline \end{array} \][/tex]
2. Convert masses to kilograms (since the weight is measured in Newtons and we need to maintain consistency in units):
[tex]\[ m_{\text{kg}} = \left[ \frac{50}{1000}, \frac{100}{1000}, \frac{150}{1000}, \frac{200}{1000}, \frac{250}{1000} \right] = [0.05, 0.1, 0.15, 0.2, 0.25] \, \text{kg} \][/tex]
3. Calculate weights using the formula [tex]\( W = m \times g \)[/tex], where [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]:
[tex]\[ W = \left[ 0.05 \times 9.81, 0.1 \times 9.81, 0.15 \times 9.81, 0.2 \times 9.81, 0.25 \times 9.81 \right] \][/tex]
The calculated weights are:
[tex]\[ W = [0.4905, 0.9810, 1.4715, 1.9620, 2.4525] \, \text{N} \][/tex]
4. Convert extensions from centimeters to meters for consistency:
[tex]\[ e_{\text{m}} = \left[ \frac{6.5}{100}, \frac{11.0}{100}, \frac{15.0}{100}, \frac{20.0}{100}, \frac{25.0}{100} \right] = [0.065, 0.11, 0.15, 0.2, 0.25] \, \text{m} \][/tex]
5. Use Hooke's law to calculate the force constant [tex]\( k \)[/tex], which states:
[tex]\[ F = k \cdot e \Rightarrow k = \frac{F}{e} \][/tex]
Calculate the force constant for each pair of weight and extension:
[tex]\[ k = \left[ \frac{0.4905}{0.065}, \frac{0.9810}{0.11}, \frac{1.4715}{0.15}, \frac{1.9620}{0.2}, \frac{2.4525}{0.25} \right] \][/tex]
Which simplifies to:
[tex]\[ k = [7.546, 8.918, 9.81, 9.81, 9.81] \, \text{N/m} \][/tex]
6. Calculate the average force constant to get an overall value for [tex]\( k \)[/tex]:
[tex]\[ k_{\text{average}} = \frac{7.546 + 8.918 + 9.81 + 9.81 + 9.81}{5} = \frac{45.894}{5} = 9.179 \, \text{N/m} \][/tex]
So based on the experimental data and calculations, the table with the weights filled in would look like this:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Mass } m \, (g) & \text{Weight } W \, (N) & \text{Extension } e \, (cm) \\ \hline 50 & 0.4905 & 6.5 \\ \hline 100 & 0.9810 & 11.0 \\ \hline 150 & 1.4715 & 15.0 \\ \hline 200 & 1.9620 & 20.0 \\ \hline 250 & 2.4525 & 25.0 \\ \hline \end{array} \][/tex]
Finally, the average force constant, [tex]\( k \)[/tex], determined from the experiment is:
[tex]\[ k_{\text{average}} = 9.179 \, \text{N/m} \][/tex]
1. List the given data:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Mass } m \, (g) & \text{Weight } W \, (N) & \text{Extension } e \, (cm) \\ \hline 50 & & 6.5 \\ \hline 100 & & 11.0 \\ \hline 150 & & 15.0 \\ \hline 200 & & 20.0 \\ \hline 250 & & 25.0 \\ \hline \end{array} \][/tex]
2. Convert masses to kilograms (since the weight is measured in Newtons and we need to maintain consistency in units):
[tex]\[ m_{\text{kg}} = \left[ \frac{50}{1000}, \frac{100}{1000}, \frac{150}{1000}, \frac{200}{1000}, \frac{250}{1000} \right] = [0.05, 0.1, 0.15, 0.2, 0.25] \, \text{kg} \][/tex]
3. Calculate weights using the formula [tex]\( W = m \times g \)[/tex], where [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]:
[tex]\[ W = \left[ 0.05 \times 9.81, 0.1 \times 9.81, 0.15 \times 9.81, 0.2 \times 9.81, 0.25 \times 9.81 \right] \][/tex]
The calculated weights are:
[tex]\[ W = [0.4905, 0.9810, 1.4715, 1.9620, 2.4525] \, \text{N} \][/tex]
4. Convert extensions from centimeters to meters for consistency:
[tex]\[ e_{\text{m}} = \left[ \frac{6.5}{100}, \frac{11.0}{100}, \frac{15.0}{100}, \frac{20.0}{100}, \frac{25.0}{100} \right] = [0.065, 0.11, 0.15, 0.2, 0.25] \, \text{m} \][/tex]
5. Use Hooke's law to calculate the force constant [tex]\( k \)[/tex], which states:
[tex]\[ F = k \cdot e \Rightarrow k = \frac{F}{e} \][/tex]
Calculate the force constant for each pair of weight and extension:
[tex]\[ k = \left[ \frac{0.4905}{0.065}, \frac{0.9810}{0.11}, \frac{1.4715}{0.15}, \frac{1.9620}{0.2}, \frac{2.4525}{0.25} \right] \][/tex]
Which simplifies to:
[tex]\[ k = [7.546, 8.918, 9.81, 9.81, 9.81] \, \text{N/m} \][/tex]
6. Calculate the average force constant to get an overall value for [tex]\( k \)[/tex]:
[tex]\[ k_{\text{average}} = \frac{7.546 + 8.918 + 9.81 + 9.81 + 9.81}{5} = \frac{45.894}{5} = 9.179 \, \text{N/m} \][/tex]
So based on the experimental data and calculations, the table with the weights filled in would look like this:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Mass } m \, (g) & \text{Weight } W \, (N) & \text{Extension } e \, (cm) \\ \hline 50 & 0.4905 & 6.5 \\ \hline 100 & 0.9810 & 11.0 \\ \hline 150 & 1.4715 & 15.0 \\ \hline 200 & 1.9620 & 20.0 \\ \hline 250 & 2.4525 & 25.0 \\ \hline \end{array} \][/tex]
Finally, the average force constant, [tex]\( k \)[/tex], determined from the experiment is:
[tex]\[ k_{\text{average}} = 9.179 \, \text{N/m} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.