Get clear, concise, and accurate answers to your questions on IDNLearn.com. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.

a. Use Bohr's equation, shown below, to calculate the wavelength of light emitted in the following electronic transitions. Give your answers in nanometers (nm), where 1 nm = [tex]\(1 \times 10^{-9}\)[/tex] m.

[tex]\[
\frac{1}{\lambda} = R \left[\frac{1}{n_2^2} - \frac{1}{n_1^2}\right]
\][/tex]

Where:
[tex]\[ R = 1.097 \times 10^7 \, \text{m}^{-1} \][/tex]
[tex]\[ n_1 = \text{original energy level} \][/tex]
[tex]\[ n_2 = \text{final energy level} \][/tex]

i. [tex]\( n=2 \rightarrow n=1 \)[/tex] (2 points)

ii. [tex]\( n=4 \rightarrow n=1 \)[/tex] (2 points)

iii. [tex]\( n=6 \rightarrow n=1 \)[/tex] (2 points)


Sagot :

Let's use Bohr's equation to calculate the wavelength of light emitted in each of the given electronic transitions. The equation is:

[tex]\[ \frac{1}{\lambda} = R \left[\frac{1}{n_2^2}-\frac{1}{n_1^2}\right] \][/tex]

where:
- [tex]\( R = 1.097 \times 10^7 \, \text{m}^{-1} \)[/tex]
- [tex]\( n_1 \)[/tex] is the initial energy level
- [tex]\( n_2 \)[/tex] is the final energy level
- [tex]\( \lambda \)[/tex] is the wavelength of the emitted light

### i. Transition: [tex]\( n=2 \rightarrow n=1 \)[/tex]

For this transition:
- [tex]\( n_1 = 2 \)[/tex]
- [tex]\( n_2 = 1 \)[/tex]

First, calculate the right-hand side of the equation inside the brackets:

[tex]\[ \frac{1}{n_2^2} - \frac{1}{n_1^2} = \frac{1}{1^2} - \frac{1}{2^2} = 1 - \frac{1}{4} = \frac{3}{4} \][/tex]

Now, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:

[tex]\[ \frac{1}{\lambda} = R \left[ \frac{3}{4} \right] = 1.097 \times 10^7 \, \text{m}^{-1} \times \frac{3}{4} = 8.2275 \times 10^6 \, \text{m}^{-1} \][/tex]

Therefore, the wavelength [tex]\( \lambda \)[/tex] is:

[tex]\[ \lambda = \frac{1}{8.2275 \times 10^6 \, \text{m}^{-1}} \approx 1.215436037678517 \times 10^{-7} \, \text{m} \][/tex]

Convert this wavelength to nanometers:

[tex]\[ \lambda_{nm} = \lambda_{m} \times 10^9 = 1.215436037678517 \times 10^{-7} \, \text{m} \times 10^9 \approx 121.5436037678517 \, \text{nm} \][/tex]

### ii. Transition: [tex]\( n=4 \rightarrow n=1 \)[/tex]

For this transition:
- [tex]\( n_1 = 4 \)[/tex]
- [tex]\( n_2 = 1 \)[/tex]

Calculate the right-hand side of the equation inside the brackets:

[tex]\[ \frac{1}{n_2^2} - \frac{1}{n_1^2} = \frac{1}{1^2} - \frac{1}{4^2} = 1 - \frac{1}{16} = \frac{15}{16} \][/tex]

Now, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:

[tex]\[ \frac{1}{\lambda} = R \left[ \frac{15}{16} \right] = 1.097 \times 10^7 \, \text{m}^{-1} \times \frac{15}{16} = 1.0284375 \times 10^7 \, \text{m}^{-1} \][/tex]

Therefore, the wavelength [tex]\( \lambda \)[/tex] is:

[tex]\[ \lambda = \frac{1}{1.0284375 \times 10^7 \, \text{m}^{-1}} \approx 9.723488301428137 \times 10^{-8} \, \text{m} \][/tex]

Convert this wavelength to nanometers:

[tex]\[ \lambda_{nm} = \lambda_{m} \times 10^9 = 9.723488301428137 \times 10^{-8} \, \text{m} \times 10^9 \approx 97.23488301428137 \, \text{nm} \][/tex]

### iii. Transition: [tex]\( n=6 \rightarrow n=1 \)[/tex]

For this transition:
- [tex]\( n_1 = 6 \)[/tex]
- [tex]\( n_2 = 1 \)[/tex]

Calculate the right-hand side of the equation inside the brackets:

[tex]\[ \frac{1}{n_2^2} - \frac{1}{n_1^2} = \frac{1}{1^2} - \frac{1}{6^2} = 1 - \frac{1}{36} = \frac{35}{36} \][/tex]

Now, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:

[tex]\[ \frac{1}{\lambda} = R \left[ \frac{35}{36} \right] = 1.097 \times 10^7 \, \text{m}^{-1} \times \frac{35}{36} = 1.067986111 \times 10^7 \, \text{m}^{-1} \][/tex]

Therefore, the wavelength [tex]\( \lambda \)[/tex] is:

[tex]\[ \lambda = \frac{1}{1.067986111 \times 10^7 \, \text{m}^{-1}} \approx 9.376220862091418 \times 10^{-8} \, \text{m} \][/tex]

Convert this wavelength to nanometers:

[tex]\[ \lambda_{nm} = \lambda_{m} \times 10^9 = 9.376220862091418 \times 10^{-8} \, \text{m} \times 10^9 \approx 93.76220862091418 \, \text{nm} \][/tex]

### Summary
i. [tex]\( n=2 \rightarrow n=1 \)[/tex]: approximately [tex]\( 121.5436 \, \text{nm} \)[/tex]

ii. [tex]\( n=4 \rightarrow n=1 \)[/tex]: approximately [tex]\( 97.23488 \, \text{nm} \)[/tex]

iii. [tex]\( n=6 \rightarrow n=1 \)[/tex]: approximately [tex]\( 93.76221 \, \text{nm} \)[/tex]