Get clear, concise, and accurate answers to your questions on IDNLearn.com. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
Let's use Bohr's equation to calculate the wavelength of light emitted in each of the given electronic transitions. The equation is:
[tex]\[ \frac{1}{\lambda} = R \left[\frac{1}{n_2^2}-\frac{1}{n_1^2}\right] \][/tex]
where:
- [tex]\( R = 1.097 \times 10^7 \, \text{m}^{-1} \)[/tex]
- [tex]\( n_1 \)[/tex] is the initial energy level
- [tex]\( n_2 \)[/tex] is the final energy level
- [tex]\( \lambda \)[/tex] is the wavelength of the emitted light
### i. Transition: [tex]\( n=2 \rightarrow n=1 \)[/tex]
For this transition:
- [tex]\( n_1 = 2 \)[/tex]
- [tex]\( n_2 = 1 \)[/tex]
First, calculate the right-hand side of the equation inside the brackets:
[tex]\[ \frac{1}{n_2^2} - \frac{1}{n_1^2} = \frac{1}{1^2} - \frac{1}{2^2} = 1 - \frac{1}{4} = \frac{3}{4} \][/tex]
Now, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:
[tex]\[ \frac{1}{\lambda} = R \left[ \frac{3}{4} \right] = 1.097 \times 10^7 \, \text{m}^{-1} \times \frac{3}{4} = 8.2275 \times 10^6 \, \text{m}^{-1} \][/tex]
Therefore, the wavelength [tex]\( \lambda \)[/tex] is:
[tex]\[ \lambda = \frac{1}{8.2275 \times 10^6 \, \text{m}^{-1}} \approx 1.215436037678517 \times 10^{-7} \, \text{m} \][/tex]
Convert this wavelength to nanometers:
[tex]\[ \lambda_{nm} = \lambda_{m} \times 10^9 = 1.215436037678517 \times 10^{-7} \, \text{m} \times 10^9 \approx 121.5436037678517 \, \text{nm} \][/tex]
### ii. Transition: [tex]\( n=4 \rightarrow n=1 \)[/tex]
For this transition:
- [tex]\( n_1 = 4 \)[/tex]
- [tex]\( n_2 = 1 \)[/tex]
Calculate the right-hand side of the equation inside the brackets:
[tex]\[ \frac{1}{n_2^2} - \frac{1}{n_1^2} = \frac{1}{1^2} - \frac{1}{4^2} = 1 - \frac{1}{16} = \frac{15}{16} \][/tex]
Now, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:
[tex]\[ \frac{1}{\lambda} = R \left[ \frac{15}{16} \right] = 1.097 \times 10^7 \, \text{m}^{-1} \times \frac{15}{16} = 1.0284375 \times 10^7 \, \text{m}^{-1} \][/tex]
Therefore, the wavelength [tex]\( \lambda \)[/tex] is:
[tex]\[ \lambda = \frac{1}{1.0284375 \times 10^7 \, \text{m}^{-1}} \approx 9.723488301428137 \times 10^{-8} \, \text{m} \][/tex]
Convert this wavelength to nanometers:
[tex]\[ \lambda_{nm} = \lambda_{m} \times 10^9 = 9.723488301428137 \times 10^{-8} \, \text{m} \times 10^9 \approx 97.23488301428137 \, \text{nm} \][/tex]
### iii. Transition: [tex]\( n=6 \rightarrow n=1 \)[/tex]
For this transition:
- [tex]\( n_1 = 6 \)[/tex]
- [tex]\( n_2 = 1 \)[/tex]
Calculate the right-hand side of the equation inside the brackets:
[tex]\[ \frac{1}{n_2^2} - \frac{1}{n_1^2} = \frac{1}{1^2} - \frac{1}{6^2} = 1 - \frac{1}{36} = \frac{35}{36} \][/tex]
Now, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:
[tex]\[ \frac{1}{\lambda} = R \left[ \frac{35}{36} \right] = 1.097 \times 10^7 \, \text{m}^{-1} \times \frac{35}{36} = 1.067986111 \times 10^7 \, \text{m}^{-1} \][/tex]
Therefore, the wavelength [tex]\( \lambda \)[/tex] is:
[tex]\[ \lambda = \frac{1}{1.067986111 \times 10^7 \, \text{m}^{-1}} \approx 9.376220862091418 \times 10^{-8} \, \text{m} \][/tex]
Convert this wavelength to nanometers:
[tex]\[ \lambda_{nm} = \lambda_{m} \times 10^9 = 9.376220862091418 \times 10^{-8} \, \text{m} \times 10^9 \approx 93.76220862091418 \, \text{nm} \][/tex]
### Summary
i. [tex]\( n=2 \rightarrow n=1 \)[/tex]: approximately [tex]\( 121.5436 \, \text{nm} \)[/tex]
ii. [tex]\( n=4 \rightarrow n=1 \)[/tex]: approximately [tex]\( 97.23488 \, \text{nm} \)[/tex]
iii. [tex]\( n=6 \rightarrow n=1 \)[/tex]: approximately [tex]\( 93.76221 \, \text{nm} \)[/tex]
[tex]\[ \frac{1}{\lambda} = R \left[\frac{1}{n_2^2}-\frac{1}{n_1^2}\right] \][/tex]
where:
- [tex]\( R = 1.097 \times 10^7 \, \text{m}^{-1} \)[/tex]
- [tex]\( n_1 \)[/tex] is the initial energy level
- [tex]\( n_2 \)[/tex] is the final energy level
- [tex]\( \lambda \)[/tex] is the wavelength of the emitted light
### i. Transition: [tex]\( n=2 \rightarrow n=1 \)[/tex]
For this transition:
- [tex]\( n_1 = 2 \)[/tex]
- [tex]\( n_2 = 1 \)[/tex]
First, calculate the right-hand side of the equation inside the brackets:
[tex]\[ \frac{1}{n_2^2} - \frac{1}{n_1^2} = \frac{1}{1^2} - \frac{1}{2^2} = 1 - \frac{1}{4} = \frac{3}{4} \][/tex]
Now, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:
[tex]\[ \frac{1}{\lambda} = R \left[ \frac{3}{4} \right] = 1.097 \times 10^7 \, \text{m}^{-1} \times \frac{3}{4} = 8.2275 \times 10^6 \, \text{m}^{-1} \][/tex]
Therefore, the wavelength [tex]\( \lambda \)[/tex] is:
[tex]\[ \lambda = \frac{1}{8.2275 \times 10^6 \, \text{m}^{-1}} \approx 1.215436037678517 \times 10^{-7} \, \text{m} \][/tex]
Convert this wavelength to nanometers:
[tex]\[ \lambda_{nm} = \lambda_{m} \times 10^9 = 1.215436037678517 \times 10^{-7} \, \text{m} \times 10^9 \approx 121.5436037678517 \, \text{nm} \][/tex]
### ii. Transition: [tex]\( n=4 \rightarrow n=1 \)[/tex]
For this transition:
- [tex]\( n_1 = 4 \)[/tex]
- [tex]\( n_2 = 1 \)[/tex]
Calculate the right-hand side of the equation inside the brackets:
[tex]\[ \frac{1}{n_2^2} - \frac{1}{n_1^2} = \frac{1}{1^2} - \frac{1}{4^2} = 1 - \frac{1}{16} = \frac{15}{16} \][/tex]
Now, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:
[tex]\[ \frac{1}{\lambda} = R \left[ \frac{15}{16} \right] = 1.097 \times 10^7 \, \text{m}^{-1} \times \frac{15}{16} = 1.0284375 \times 10^7 \, \text{m}^{-1} \][/tex]
Therefore, the wavelength [tex]\( \lambda \)[/tex] is:
[tex]\[ \lambda = \frac{1}{1.0284375 \times 10^7 \, \text{m}^{-1}} \approx 9.723488301428137 \times 10^{-8} \, \text{m} \][/tex]
Convert this wavelength to nanometers:
[tex]\[ \lambda_{nm} = \lambda_{m} \times 10^9 = 9.723488301428137 \times 10^{-8} \, \text{m} \times 10^9 \approx 97.23488301428137 \, \text{nm} \][/tex]
### iii. Transition: [tex]\( n=6 \rightarrow n=1 \)[/tex]
For this transition:
- [tex]\( n_1 = 6 \)[/tex]
- [tex]\( n_2 = 1 \)[/tex]
Calculate the right-hand side of the equation inside the brackets:
[tex]\[ \frac{1}{n_2^2} - \frac{1}{n_1^2} = \frac{1}{1^2} - \frac{1}{6^2} = 1 - \frac{1}{36} = \frac{35}{36} \][/tex]
Now, calculate [tex]\( \frac{1}{\lambda} \)[/tex]:
[tex]\[ \frac{1}{\lambda} = R \left[ \frac{35}{36} \right] = 1.097 \times 10^7 \, \text{m}^{-1} \times \frac{35}{36} = 1.067986111 \times 10^7 \, \text{m}^{-1} \][/tex]
Therefore, the wavelength [tex]\( \lambda \)[/tex] is:
[tex]\[ \lambda = \frac{1}{1.067986111 \times 10^7 \, \text{m}^{-1}} \approx 9.376220862091418 \times 10^{-8} \, \text{m} \][/tex]
Convert this wavelength to nanometers:
[tex]\[ \lambda_{nm} = \lambda_{m} \times 10^9 = 9.376220862091418 \times 10^{-8} \, \text{m} \times 10^9 \approx 93.76220862091418 \, \text{nm} \][/tex]
### Summary
i. [tex]\( n=2 \rightarrow n=1 \)[/tex]: approximately [tex]\( 121.5436 \, \text{nm} \)[/tex]
ii. [tex]\( n=4 \rightarrow n=1 \)[/tex]: approximately [tex]\( 97.23488 \, \text{nm} \)[/tex]
iii. [tex]\( n=6 \rightarrow n=1 \)[/tex]: approximately [tex]\( 93.76221 \, \text{nm} \)[/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.