Get the answers you've been searching for with IDNLearn.com. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.
Sagot :
To determine the magnitude of the charge in nano-Coulombs that creates a [tex]\(36.49\, \text{N/C}\)[/tex] electric field at a distance of [tex]\(8.38 \, \text{m}\)[/tex], we will use the relationship between the electric field [tex]\(E\)[/tex] and the charge [tex]\(q\)[/tex], given by Coulomb's law:
[tex]\[ E = k \frac{|q|}{r^2} \][/tex]
where:
- [tex]\(E\)[/tex] is the electric field ([tex]\(\text{N/C}\)[/tex]),
- [tex]\(k\)[/tex] is Coulomb's constant (approximately [tex]\(8.99 \times 10^9 \,\text{N·m}^2/\text{C}^2\)[/tex]),
- [tex]\(r\)[/tex] is the distance from the charge ([tex]\(\text{m}\)[/tex]),
- [tex]\(q\)[/tex] is the magnitude of the charge ([tex]\(\text{C}\)[/tex]).
First, rearrange the formula to solve for the magnitude of the charge [tex]\(|q|\)[/tex]:
[tex]\[ |q| = \frac{E r^2}{k} \][/tex]
Given the values:
- [tex]\(E = 36.49\, \text{N/C}\)[/tex],
- [tex]\(r = 8.38 \, \text{m}\)[/tex],
- [tex]\(k = 8.99 \times 10^9 \,\text{N·m}^2/\text{C}^2\)[/tex],
we substitute these values into the formula:
[tex]\[ |q| = \frac{36.49 \times (8.38)^2}{8.99 \times 10^9} \][/tex]
Evaluating the numerical components step-by-step:
1. Calculate [tex]\(r^2\)[/tex]:
[tex]\[ (8.38)^2 = 70.2244 \][/tex]
2. Multiply [tex]\(E\)[/tex] by [tex]\(r^2\)[/tex]:
[tex]\[ 36.49 \times 70.2244 \approx 2563.2903 \][/tex]
3. Divide by Coulomb's constant [tex]\(k\)[/tex]:
[tex]\[ \frac{2563.2903}{8.99 \times 10^9} \approx 2.8504 \times 10^{-7} \, \text{C} \][/tex]
Thus, the magnitude of the charge in Coulombs is approximately:
[tex]\[ |q| = 2.8504 \times 10^{-7} \, \text{C} \][/tex]
To convert this charge into nano-Coulombs (nC), we use the conversion factor [tex]\(1 \, \text{C} = 10^9 \, \text{nC}\)[/tex]:
[tex]\[ \text{Charge in nC} = 2.8504 \times 10^{-7} \, \text{C} \times 10^9 \, \text{nC/C} \approx 285.0376 \, \text{nC} \][/tex]
So, the magnitude of the charge that creates a [tex]\(36.49 \, \text{N/C}\)[/tex] electric field at a point [tex]\(8.38 \, \text{m}\)[/tex] away is approximately:
[tex]\[ 285.0376 \, \text{nC} \][/tex]
[tex]\[ E = k \frac{|q|}{r^2} \][/tex]
where:
- [tex]\(E\)[/tex] is the electric field ([tex]\(\text{N/C}\)[/tex]),
- [tex]\(k\)[/tex] is Coulomb's constant (approximately [tex]\(8.99 \times 10^9 \,\text{N·m}^2/\text{C}^2\)[/tex]),
- [tex]\(r\)[/tex] is the distance from the charge ([tex]\(\text{m}\)[/tex]),
- [tex]\(q\)[/tex] is the magnitude of the charge ([tex]\(\text{C}\)[/tex]).
First, rearrange the formula to solve for the magnitude of the charge [tex]\(|q|\)[/tex]:
[tex]\[ |q| = \frac{E r^2}{k} \][/tex]
Given the values:
- [tex]\(E = 36.49\, \text{N/C}\)[/tex],
- [tex]\(r = 8.38 \, \text{m}\)[/tex],
- [tex]\(k = 8.99 \times 10^9 \,\text{N·m}^2/\text{C}^2\)[/tex],
we substitute these values into the formula:
[tex]\[ |q| = \frac{36.49 \times (8.38)^2}{8.99 \times 10^9} \][/tex]
Evaluating the numerical components step-by-step:
1. Calculate [tex]\(r^2\)[/tex]:
[tex]\[ (8.38)^2 = 70.2244 \][/tex]
2. Multiply [tex]\(E\)[/tex] by [tex]\(r^2\)[/tex]:
[tex]\[ 36.49 \times 70.2244 \approx 2563.2903 \][/tex]
3. Divide by Coulomb's constant [tex]\(k\)[/tex]:
[tex]\[ \frac{2563.2903}{8.99 \times 10^9} \approx 2.8504 \times 10^{-7} \, \text{C} \][/tex]
Thus, the magnitude of the charge in Coulombs is approximately:
[tex]\[ |q| = 2.8504 \times 10^{-7} \, \text{C} \][/tex]
To convert this charge into nano-Coulombs (nC), we use the conversion factor [tex]\(1 \, \text{C} = 10^9 \, \text{nC}\)[/tex]:
[tex]\[ \text{Charge in nC} = 2.8504 \times 10^{-7} \, \text{C} \times 10^9 \, \text{nC/C} \approx 285.0376 \, \text{nC} \][/tex]
So, the magnitude of the charge that creates a [tex]\(36.49 \, \text{N/C}\)[/tex] electric field at a point [tex]\(8.38 \, \text{m}\)[/tex] away is approximately:
[tex]\[ 285.0376 \, \text{nC} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.