IDNLearn.com makes it easy to find answers and share knowledge with others. Our platform offers reliable and comprehensive answers to help you make informed decisions quickly and easily.
Sagot :
Let's consider the function [tex]\( g: x \mapsto \log_3(x + 2) - 2 \)[/tex].
### a. Transformation
To transform the function [tex]\( y = \log_3(x) \)[/tex] to [tex]\( y = \log_3(x + 2) - 2 \)[/tex], we perform the following steps:
1. Horizontal shift: [tex]\( \log_3(x) \)[/tex] to [tex]\( \log_3(x + 2) \)[/tex]. This represents a shift to the left by 2 units.
2. Vertical shift: [tex]\( \log_3(x + 2) \)[/tex] to [tex]\( \log_3(x + 2) - 2 \)[/tex]. This represents a shift down by 2 units.
Thus, the transformation is: Horizontal shift of 2 units to the left and vertical shift of 2 units downward.
### b. Domain and Range
Domain:
The argument of the logarithmic function, [tex]\( x + 2 \)[/tex], must be positive:
[tex]\[ x + 2 > 0 \][/tex]
[tex]\[ x > -2 \][/tex]
Therefore, the domain of [tex]\( g(x) \)[/tex] is [tex]\( (-2, \infty) \)[/tex].
Range:
Since the range of [tex]\( \log_3(x) \)[/tex] is all real numbers and we are only shifting vertically by a constant, the range of [tex]\( g(x) \)[/tex] remains all real numbers:
[tex]\[ (-\infty, \infty) \][/tex]
### c. Asymptotes and Intercepts
Asymptotes:
The vertical asymptote occurs where the argument of the logarithm goes to zero:
[tex]\[ x + 2 = 0 \][/tex]
[tex]\[ x = -2 \][/tex]
So, there is a vertical asymptote at [tex]\( x = -2 \)[/tex].
Intercepts:
- Y-intercept: Set [tex]\( x = 0 \)[/tex] in [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = \log_3(0 + 2) - 2 = \log_3(2) - 2 \][/tex]
- X-intercept: Solve [tex]\( g(x) = 0 \)[/tex]:
[tex]\[ \log_3(x + 2) - 2 = 0 \][/tex]
[tex]\[ \log_3(x + 2) = 2 \][/tex]
[tex]\[ x + 2 = 3^2 = 9 \][/tex]
[tex]\[ x = 7 \][/tex]
Therefore, the intercepts are:
- [tex]\( y \)[/tex]-intercept: [tex]\( \left(0, \log_3(2) - 2 \right) \)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\( (7, 0) \)[/tex]
### d. Inverse Function
To find the inverse function [tex]\( g^{-1} \)[/tex]:
1. Start with [tex]\( y = \log_3(x + 2) - 2 \)[/tex].
2. Swap [tex]\( y \)[/tex] and [tex]\( x \)[/tex]:
[tex]\[ x = \log_3(y + 2) - 2 \][/tex]
3. Solve for [tex]\( y \)[/tex]:
[tex]\[ x + 2 = \log_3(y + 2) \][/tex]
[tex]\[ 3^{x + 2} = y + 2 \][/tex]
[tex]\[ y = 3^{x + 2} - 2 \][/tex]
Thus, the inverse function is:
[tex]\[ g^{-1}(x) = 3^{x + 2} - 2 \][/tex]
### e. Sketch the Graphs
To sketch the graphs of [tex]\( g(x) \)[/tex], [tex]\( g^{-1}(x) \)[/tex], and [tex]\( y = x \)[/tex]:
1. Graph of [tex]\( g(x) = \log_3(x + 2) - 2 \)[/tex]:
- Vertical asymptote at [tex]\( x = -2 \)[/tex].
- Passes through intercepts ([tex]\(0, \log_3(2) - 2\)[/tex]) and (7,0).
- General shape of a logarithmic function shifted left and down.
2. Graph of [tex]\( g^{-1}(x) = 3^{x + 2} - 2 \)[/tex]:
- This is an exponential function.
- Horizontal asymptote at [tex]\( y = -2 \)[/tex].
- Passes through (0,7) and intercepts [tex]\((\log_3(2)-2,0)\)[/tex].
3. Graph of [tex]\( y = x \)[/tex]:
- A straight line passing through the origin with a slope of 1.
When sketching, ensure the graphs intersect at points which are mutual inverses considering the functions [tex]\( g \)[/tex] and [tex]\( g^{-1} \)[/tex]. Place the following points on the graph:
- Points of intersection like (7,0) on [tex]\( g(x) \)[/tex] intersects at (0,7) on [tex]\( g^{-1}(x) \)[/tex].
- The y-intercept [tex]\(\left(0, \log_3(2) - 2 \right)\)[/tex] on [tex]\( g(x) \)[/tex] and it's corresponding inverse point.
With this information, the sketches should manifest the linked transformations and the relationship between the logarithmic and exponential functions.
### a. Transformation
To transform the function [tex]\( y = \log_3(x) \)[/tex] to [tex]\( y = \log_3(x + 2) - 2 \)[/tex], we perform the following steps:
1. Horizontal shift: [tex]\( \log_3(x) \)[/tex] to [tex]\( \log_3(x + 2) \)[/tex]. This represents a shift to the left by 2 units.
2. Vertical shift: [tex]\( \log_3(x + 2) \)[/tex] to [tex]\( \log_3(x + 2) - 2 \)[/tex]. This represents a shift down by 2 units.
Thus, the transformation is: Horizontal shift of 2 units to the left and vertical shift of 2 units downward.
### b. Domain and Range
Domain:
The argument of the logarithmic function, [tex]\( x + 2 \)[/tex], must be positive:
[tex]\[ x + 2 > 0 \][/tex]
[tex]\[ x > -2 \][/tex]
Therefore, the domain of [tex]\( g(x) \)[/tex] is [tex]\( (-2, \infty) \)[/tex].
Range:
Since the range of [tex]\( \log_3(x) \)[/tex] is all real numbers and we are only shifting vertically by a constant, the range of [tex]\( g(x) \)[/tex] remains all real numbers:
[tex]\[ (-\infty, \infty) \][/tex]
### c. Asymptotes and Intercepts
Asymptotes:
The vertical asymptote occurs where the argument of the logarithm goes to zero:
[tex]\[ x + 2 = 0 \][/tex]
[tex]\[ x = -2 \][/tex]
So, there is a vertical asymptote at [tex]\( x = -2 \)[/tex].
Intercepts:
- Y-intercept: Set [tex]\( x = 0 \)[/tex] in [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = \log_3(0 + 2) - 2 = \log_3(2) - 2 \][/tex]
- X-intercept: Solve [tex]\( g(x) = 0 \)[/tex]:
[tex]\[ \log_3(x + 2) - 2 = 0 \][/tex]
[tex]\[ \log_3(x + 2) = 2 \][/tex]
[tex]\[ x + 2 = 3^2 = 9 \][/tex]
[tex]\[ x = 7 \][/tex]
Therefore, the intercepts are:
- [tex]\( y \)[/tex]-intercept: [tex]\( \left(0, \log_3(2) - 2 \right) \)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\( (7, 0) \)[/tex]
### d. Inverse Function
To find the inverse function [tex]\( g^{-1} \)[/tex]:
1. Start with [tex]\( y = \log_3(x + 2) - 2 \)[/tex].
2. Swap [tex]\( y \)[/tex] and [tex]\( x \)[/tex]:
[tex]\[ x = \log_3(y + 2) - 2 \][/tex]
3. Solve for [tex]\( y \)[/tex]:
[tex]\[ x + 2 = \log_3(y + 2) \][/tex]
[tex]\[ 3^{x + 2} = y + 2 \][/tex]
[tex]\[ y = 3^{x + 2} - 2 \][/tex]
Thus, the inverse function is:
[tex]\[ g^{-1}(x) = 3^{x + 2} - 2 \][/tex]
### e. Sketch the Graphs
To sketch the graphs of [tex]\( g(x) \)[/tex], [tex]\( g^{-1}(x) \)[/tex], and [tex]\( y = x \)[/tex]:
1. Graph of [tex]\( g(x) = \log_3(x + 2) - 2 \)[/tex]:
- Vertical asymptote at [tex]\( x = -2 \)[/tex].
- Passes through intercepts ([tex]\(0, \log_3(2) - 2\)[/tex]) and (7,0).
- General shape of a logarithmic function shifted left and down.
2. Graph of [tex]\( g^{-1}(x) = 3^{x + 2} - 2 \)[/tex]:
- This is an exponential function.
- Horizontal asymptote at [tex]\( y = -2 \)[/tex].
- Passes through (0,7) and intercepts [tex]\((\log_3(2)-2,0)\)[/tex].
3. Graph of [tex]\( y = x \)[/tex]:
- A straight line passing through the origin with a slope of 1.
When sketching, ensure the graphs intersect at points which are mutual inverses considering the functions [tex]\( g \)[/tex] and [tex]\( g^{-1} \)[/tex]. Place the following points on the graph:
- Points of intersection like (7,0) on [tex]\( g(x) \)[/tex] intersects at (0,7) on [tex]\( g^{-1}(x) \)[/tex].
- The y-intercept [tex]\(\left(0, \log_3(2) - 2 \right)\)[/tex] on [tex]\( g(x) \)[/tex] and it's corresponding inverse point.
With this information, the sketches should manifest the linked transformations and the relationship between the logarithmic and exponential functions.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.