Join the IDNLearn.com community and get your questions answered by knowledgeable individuals. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
Sure! Let's address this step by step.
We are given the reaction:
[tex]\[ \text{SO}_3(g) \rightarrow \text{SO}_2(g) + \frac{1}{2} \text{O}_2(g) \][/tex]
With the following parameters:
- [tex]\(\Delta H = 98.4\, \text{kJ/mol}\)[/tex] (Change in enthalpy)
- [tex]\(\Delta S = 0.09564\, \text{kJ/(mol·K)}\)[/tex] (Change in entropy)
Now, we need to determine the Gibbs free energy change ([tex]\(\Delta G\)[/tex]) at a specified temperature. For this calculation, let's use the standard temperature [tex]\(T = 298\, K\)[/tex].
To find [tex]\(\Delta G\)[/tex], we use the Gibbs free energy equation:
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Substituting in the given values:
[tex]\[ \Delta G = 98.4\, \text{kJ/mol} - (298\, \text{K} \times 0.09564\, \text{kJ/(mol·K)}) \][/tex]
Performing the multiplication inside the parentheses first:
[tex]\[ T \Delta S = 298\, \text{K} \times 0.09564\, \text{kJ/(mol·K)} = 28.50072\, \text{kJ/mol} \][/tex]
Now, subtract this result from [tex]\(\Delta H\)[/tex]:
[tex]\[ \Delta G = 98.4\, \text{kJ/mol} - 28.50072\, \text{kJ/mol} \][/tex]
[tex]\[ \Delta G = 69.89928\, \text{kJ/mol} \][/tex]
Thus, the change in Gibbs free energy ([tex]\(\Delta G\)[/tex]) is:
[tex]\[ \Delta G = 69.89928\, \text{kJ/mol} \][/tex]
Summarizing our findings:
- [tex]\(\Delta H = 98.4\, \text{kJ/mol}\)[/tex]
- [tex]\(\Delta S = 0.09564\, \text{kJ/(mol·K)}\)[/tex]
- [tex]\(T = 298\, K\)[/tex]
- [tex]\(\Delta G = 69.89928\, \text{kJ/mol}\)[/tex]
These steps clearly illustrate how to determine the Gibbs free energy change given the enthalpy change, entropy change, and temperature of the reaction.
We are given the reaction:
[tex]\[ \text{SO}_3(g) \rightarrow \text{SO}_2(g) + \frac{1}{2} \text{O}_2(g) \][/tex]
With the following parameters:
- [tex]\(\Delta H = 98.4\, \text{kJ/mol}\)[/tex] (Change in enthalpy)
- [tex]\(\Delta S = 0.09564\, \text{kJ/(mol·K)}\)[/tex] (Change in entropy)
Now, we need to determine the Gibbs free energy change ([tex]\(\Delta G\)[/tex]) at a specified temperature. For this calculation, let's use the standard temperature [tex]\(T = 298\, K\)[/tex].
To find [tex]\(\Delta G\)[/tex], we use the Gibbs free energy equation:
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Substituting in the given values:
[tex]\[ \Delta G = 98.4\, \text{kJ/mol} - (298\, \text{K} \times 0.09564\, \text{kJ/(mol·K)}) \][/tex]
Performing the multiplication inside the parentheses first:
[tex]\[ T \Delta S = 298\, \text{K} \times 0.09564\, \text{kJ/(mol·K)} = 28.50072\, \text{kJ/mol} \][/tex]
Now, subtract this result from [tex]\(\Delta H\)[/tex]:
[tex]\[ \Delta G = 98.4\, \text{kJ/mol} - 28.50072\, \text{kJ/mol} \][/tex]
[tex]\[ \Delta G = 69.89928\, \text{kJ/mol} \][/tex]
Thus, the change in Gibbs free energy ([tex]\(\Delta G\)[/tex]) is:
[tex]\[ \Delta G = 69.89928\, \text{kJ/mol} \][/tex]
Summarizing our findings:
- [tex]\(\Delta H = 98.4\, \text{kJ/mol}\)[/tex]
- [tex]\(\Delta S = 0.09564\, \text{kJ/(mol·K)}\)[/tex]
- [tex]\(T = 298\, K\)[/tex]
- [tex]\(\Delta G = 69.89928\, \text{kJ/mol}\)[/tex]
These steps clearly illustrate how to determine the Gibbs free energy change given the enthalpy change, entropy change, and temperature of the reaction.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.