Get the best answers to your questions with the help of IDNLearn.com's experts. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
Sure! Let's address this step by step.
We are given the reaction:
[tex]\[ \text{SO}_3(g) \rightarrow \text{SO}_2(g) + \frac{1}{2} \text{O}_2(g) \][/tex]
With the following parameters:
- [tex]\(\Delta H = 98.4\, \text{kJ/mol}\)[/tex] (Change in enthalpy)
- [tex]\(\Delta S = 0.09564\, \text{kJ/(mol·K)}\)[/tex] (Change in entropy)
Now, we need to determine the Gibbs free energy change ([tex]\(\Delta G\)[/tex]) at a specified temperature. For this calculation, let's use the standard temperature [tex]\(T = 298\, K\)[/tex].
To find [tex]\(\Delta G\)[/tex], we use the Gibbs free energy equation:
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Substituting in the given values:
[tex]\[ \Delta G = 98.4\, \text{kJ/mol} - (298\, \text{K} \times 0.09564\, \text{kJ/(mol·K)}) \][/tex]
Performing the multiplication inside the parentheses first:
[tex]\[ T \Delta S = 298\, \text{K} \times 0.09564\, \text{kJ/(mol·K)} = 28.50072\, \text{kJ/mol} \][/tex]
Now, subtract this result from [tex]\(\Delta H\)[/tex]:
[tex]\[ \Delta G = 98.4\, \text{kJ/mol} - 28.50072\, \text{kJ/mol} \][/tex]
[tex]\[ \Delta G = 69.89928\, \text{kJ/mol} \][/tex]
Thus, the change in Gibbs free energy ([tex]\(\Delta G\)[/tex]) is:
[tex]\[ \Delta G = 69.89928\, \text{kJ/mol} \][/tex]
Summarizing our findings:
- [tex]\(\Delta H = 98.4\, \text{kJ/mol}\)[/tex]
- [tex]\(\Delta S = 0.09564\, \text{kJ/(mol·K)}\)[/tex]
- [tex]\(T = 298\, K\)[/tex]
- [tex]\(\Delta G = 69.89928\, \text{kJ/mol}\)[/tex]
These steps clearly illustrate how to determine the Gibbs free energy change given the enthalpy change, entropy change, and temperature of the reaction.
We are given the reaction:
[tex]\[ \text{SO}_3(g) \rightarrow \text{SO}_2(g) + \frac{1}{2} \text{O}_2(g) \][/tex]
With the following parameters:
- [tex]\(\Delta H = 98.4\, \text{kJ/mol}\)[/tex] (Change in enthalpy)
- [tex]\(\Delta S = 0.09564\, \text{kJ/(mol·K)}\)[/tex] (Change in entropy)
Now, we need to determine the Gibbs free energy change ([tex]\(\Delta G\)[/tex]) at a specified temperature. For this calculation, let's use the standard temperature [tex]\(T = 298\, K\)[/tex].
To find [tex]\(\Delta G\)[/tex], we use the Gibbs free energy equation:
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Substituting in the given values:
[tex]\[ \Delta G = 98.4\, \text{kJ/mol} - (298\, \text{K} \times 0.09564\, \text{kJ/(mol·K)}) \][/tex]
Performing the multiplication inside the parentheses first:
[tex]\[ T \Delta S = 298\, \text{K} \times 0.09564\, \text{kJ/(mol·K)} = 28.50072\, \text{kJ/mol} \][/tex]
Now, subtract this result from [tex]\(\Delta H\)[/tex]:
[tex]\[ \Delta G = 98.4\, \text{kJ/mol} - 28.50072\, \text{kJ/mol} \][/tex]
[tex]\[ \Delta G = 69.89928\, \text{kJ/mol} \][/tex]
Thus, the change in Gibbs free energy ([tex]\(\Delta G\)[/tex]) is:
[tex]\[ \Delta G = 69.89928\, \text{kJ/mol} \][/tex]
Summarizing our findings:
- [tex]\(\Delta H = 98.4\, \text{kJ/mol}\)[/tex]
- [tex]\(\Delta S = 0.09564\, \text{kJ/(mol·K)}\)[/tex]
- [tex]\(T = 298\, K\)[/tex]
- [tex]\(\Delta G = 69.89928\, \text{kJ/mol}\)[/tex]
These steps clearly illustrate how to determine the Gibbs free energy change given the enthalpy change, entropy change, and temperature of the reaction.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.