IDNLearn.com offers a seamless experience for finding and sharing knowledge. Receive prompt and accurate responses to your questions from our community of knowledgeable professionals ready to assist you at any time.
Sagot :
Sure, let's go through each part of the question step-by-step.
### 2.1 Asymptotes
#### Vertical Asymptote:
To determine the vertical asymptote, we need to consider the values which make the denominator zero. The given function is:
[tex]\[ f(x) = \frac{-3}{x-2} + 1 \][/tex]
The vertical asymptote occurs when the denominator is zero:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
So, the vertical asymptote is:
[tex]\[ x = 2 \][/tex]
#### Horizontal Asymptote:
To find the horizontal asymptote, we need to analyze the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(\pm\infty\)[/tex].
As [tex]\( x \to \pm\infty \)[/tex], [tex]\(\frac{-3}{x-2} \to 0\)[/tex]. Therefore,
[tex]\[ f(x) \approx 0 + 1 = 1 \][/tex]
So, the horizontal asymptote is:
[tex]\[ y = 1 \][/tex]
### 2.2 Intercepts
#### [tex]\(x\)[/tex]-Intercept:
The [tex]\(x\)[/tex]-intercept occurs when [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ \frac{-3}{x-2} + 1 = 0 \][/tex]
Solving this equation:
[tex]\[ \frac{-3}{x-2} = -1 \][/tex]
[tex]\[ \frac{3}{x-2} = 1 \][/tex]
[tex]\[ 3 = x - 2 \][/tex]
[tex]\[ x = 5 \][/tex]
So, the [tex]\(x\)[/tex]-intercept is:
[tex]\[ (5, 0) \][/tex]
#### [tex]\(y\)[/tex]-Intercept:
The [tex]\(y\)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{-3}{0-2} + 1 \][/tex]
[tex]\[ f(0) = \frac{-3}{-2} + 1 \][/tex]
[tex]\[ f(0) = 1.5 + 1 \][/tex]
[tex]\[ f(0) = 2.5 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is:
[tex]\[ (0, 2.5) \][/tex]
### 2.3 Sketching the Graph
To sketch the graph of [tex]\( f(x) \)[/tex], you should include the following:
- The vertical asymptote at [tex]\( x = 2 \)[/tex]
- The horizontal asymptote at [tex]\( y = 1 \)[/tex]
- The [tex]\( x \)[/tex]-intercept at [tex]\( (5, 0) \)[/tex]
- The [tex]\( y \)[/tex]-intercept at [tex]\( (0, 2.5) \)[/tex]
The graph is a hyperbola that approaches these asymptotes.
### 2.4 Range of [tex]\( y = -f(x) \)[/tex]
Given [tex]\( f(x) = \frac{-3}{x-2} + 1 \)[/tex], the transformation [tex]\( -f(x) \)[/tex] reverses the sign of [tex]\( f(x) \)[/tex]:
[tex]\[ -f(x) = -\left(\frac{-3}{x-2} + 1\right) \][/tex]
[tex]\[ -f(x) = \frac{3}{x-2} - 1 \][/tex]
As [tex]\( x \to \pm\infty \)[/tex], [tex]\(\frac{3}{x-2} \to 0\)[/tex] and thus:
[tex]\[ y = -1 \][/tex]
So, the horizontal asymptote of [tex]\( y = -f(x) \)[/tex] is [tex]\( y = -1 \)[/tex].
The function [tex]\( \frac{3}{x-2} - 1 \)[/tex] can take any real value except [tex]\(-1\)[/tex]. Therefore, the range of [tex]\( y = -f(x) \)[/tex] is:
[tex]\[ (-\infty, -1) \cup (-1, \infty) \][/tex]
### 2.5 Axes of Symmetry
The function [tex]\( f(x) = \frac{-3}{x-2} + 1 \)[/tex] is symmetric about the line [tex]\( x = 2 \)[/tex] because it is centered around the vertical asymptote.
If you consider horizontal symmetry, you can reflect the graph over the horizontal asymptote [tex]\( y = 1 \)[/tex]. Therefore, the equations of the axes of symmetry are:
[tex]\[ x = 2 \][/tex]
[tex]\[ y = 1 \][/tex]
### 2.6 Solving Inequality [tex]\( \frac{-3}{x-2} \leq -1 \)[/tex]
First solve the equality:
[tex]\[ \frac{-3}{x-2} = -1 \][/tex]
[tex]\[ \frac{3}{x-2} = 1 \][/tex]
[tex]\[ 3 = x - 2 \][/tex]
[tex]\[ x = 5 \][/tex]
To solve the inequality [tex]\( \frac{-3}{x-2} \leq -1 \)[/tex]:
Rewriting:
[tex]\[ \frac{3}{x-2} \geq 1 \][/tex]
This inequality holds when:
[tex]\[ 3 \geq x - 2 \][/tex]
[tex]\[ x \leq 5 \][/tex]
Thus, the solution set for the inequality is:
[tex]\[ (-\infty, 5] \][/tex]
### 2.7 Translating [tex]\( f \)[/tex] 3 units to the right and 4 units down
To translate the function [tex]\( f(x) \)[/tex] 3 units to the right, substitute [tex]\( x \)[/tex] with [tex]\( x-3 \)[/tex]:
[tex]\[ f(x-3) = \frac{-3}{(x-3)-2} + 1 = \frac{-3}{x-5} + 1 \][/tex]
Then to translate it 4 units down, subtract 4 from the result:
[tex]\[ h(x) = \frac{-3}{x-5} + 1 - 4 \][/tex]
[tex]\[ h(x) = \frac{-3}{x-5} - 3 \][/tex]
So, the equation of [tex]\( h \)[/tex] is:
[tex]\[ h(x) = \frac{-3}{x-5} - 3 \][/tex]
### 2.1 Asymptotes
#### Vertical Asymptote:
To determine the vertical asymptote, we need to consider the values which make the denominator zero. The given function is:
[tex]\[ f(x) = \frac{-3}{x-2} + 1 \][/tex]
The vertical asymptote occurs when the denominator is zero:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
So, the vertical asymptote is:
[tex]\[ x = 2 \][/tex]
#### Horizontal Asymptote:
To find the horizontal asymptote, we need to analyze the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(\pm\infty\)[/tex].
As [tex]\( x \to \pm\infty \)[/tex], [tex]\(\frac{-3}{x-2} \to 0\)[/tex]. Therefore,
[tex]\[ f(x) \approx 0 + 1 = 1 \][/tex]
So, the horizontal asymptote is:
[tex]\[ y = 1 \][/tex]
### 2.2 Intercepts
#### [tex]\(x\)[/tex]-Intercept:
The [tex]\(x\)[/tex]-intercept occurs when [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ \frac{-3}{x-2} + 1 = 0 \][/tex]
Solving this equation:
[tex]\[ \frac{-3}{x-2} = -1 \][/tex]
[tex]\[ \frac{3}{x-2} = 1 \][/tex]
[tex]\[ 3 = x - 2 \][/tex]
[tex]\[ x = 5 \][/tex]
So, the [tex]\(x\)[/tex]-intercept is:
[tex]\[ (5, 0) \][/tex]
#### [tex]\(y\)[/tex]-Intercept:
The [tex]\(y\)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{-3}{0-2} + 1 \][/tex]
[tex]\[ f(0) = \frac{-3}{-2} + 1 \][/tex]
[tex]\[ f(0) = 1.5 + 1 \][/tex]
[tex]\[ f(0) = 2.5 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is:
[tex]\[ (0, 2.5) \][/tex]
### 2.3 Sketching the Graph
To sketch the graph of [tex]\( f(x) \)[/tex], you should include the following:
- The vertical asymptote at [tex]\( x = 2 \)[/tex]
- The horizontal asymptote at [tex]\( y = 1 \)[/tex]
- The [tex]\( x \)[/tex]-intercept at [tex]\( (5, 0) \)[/tex]
- The [tex]\( y \)[/tex]-intercept at [tex]\( (0, 2.5) \)[/tex]
The graph is a hyperbola that approaches these asymptotes.
### 2.4 Range of [tex]\( y = -f(x) \)[/tex]
Given [tex]\( f(x) = \frac{-3}{x-2} + 1 \)[/tex], the transformation [tex]\( -f(x) \)[/tex] reverses the sign of [tex]\( f(x) \)[/tex]:
[tex]\[ -f(x) = -\left(\frac{-3}{x-2} + 1\right) \][/tex]
[tex]\[ -f(x) = \frac{3}{x-2} - 1 \][/tex]
As [tex]\( x \to \pm\infty \)[/tex], [tex]\(\frac{3}{x-2} \to 0\)[/tex] and thus:
[tex]\[ y = -1 \][/tex]
So, the horizontal asymptote of [tex]\( y = -f(x) \)[/tex] is [tex]\( y = -1 \)[/tex].
The function [tex]\( \frac{3}{x-2} - 1 \)[/tex] can take any real value except [tex]\(-1\)[/tex]. Therefore, the range of [tex]\( y = -f(x) \)[/tex] is:
[tex]\[ (-\infty, -1) \cup (-1, \infty) \][/tex]
### 2.5 Axes of Symmetry
The function [tex]\( f(x) = \frac{-3}{x-2} + 1 \)[/tex] is symmetric about the line [tex]\( x = 2 \)[/tex] because it is centered around the vertical asymptote.
If you consider horizontal symmetry, you can reflect the graph over the horizontal asymptote [tex]\( y = 1 \)[/tex]. Therefore, the equations of the axes of symmetry are:
[tex]\[ x = 2 \][/tex]
[tex]\[ y = 1 \][/tex]
### 2.6 Solving Inequality [tex]\( \frac{-3}{x-2} \leq -1 \)[/tex]
First solve the equality:
[tex]\[ \frac{-3}{x-2} = -1 \][/tex]
[tex]\[ \frac{3}{x-2} = 1 \][/tex]
[tex]\[ 3 = x - 2 \][/tex]
[tex]\[ x = 5 \][/tex]
To solve the inequality [tex]\( \frac{-3}{x-2} \leq -1 \)[/tex]:
Rewriting:
[tex]\[ \frac{3}{x-2} \geq 1 \][/tex]
This inequality holds when:
[tex]\[ 3 \geq x - 2 \][/tex]
[tex]\[ x \leq 5 \][/tex]
Thus, the solution set for the inequality is:
[tex]\[ (-\infty, 5] \][/tex]
### 2.7 Translating [tex]\( f \)[/tex] 3 units to the right and 4 units down
To translate the function [tex]\( f(x) \)[/tex] 3 units to the right, substitute [tex]\( x \)[/tex] with [tex]\( x-3 \)[/tex]:
[tex]\[ f(x-3) = \frac{-3}{(x-3)-2} + 1 = \frac{-3}{x-5} + 1 \][/tex]
Then to translate it 4 units down, subtract 4 from the result:
[tex]\[ h(x) = \frac{-3}{x-5} + 1 - 4 \][/tex]
[tex]\[ h(x) = \frac{-3}{x-5} - 3 \][/tex]
So, the equation of [tex]\( h \)[/tex] is:
[tex]\[ h(x) = \frac{-3}{x-5} - 3 \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.