From tech troubles to travel tips, IDNLearn.com has answers to all your questions. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
Sure, let's go through each part of the question step-by-step.
### 2.1 Asymptotes
#### Vertical Asymptote:
To determine the vertical asymptote, we need to consider the values which make the denominator zero. The given function is:
[tex]\[ f(x) = \frac{-3}{x-2} + 1 \][/tex]
The vertical asymptote occurs when the denominator is zero:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
So, the vertical asymptote is:
[tex]\[ x = 2 \][/tex]
#### Horizontal Asymptote:
To find the horizontal asymptote, we need to analyze the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(\pm\infty\)[/tex].
As [tex]\( x \to \pm\infty \)[/tex], [tex]\(\frac{-3}{x-2} \to 0\)[/tex]. Therefore,
[tex]\[ f(x) \approx 0 + 1 = 1 \][/tex]
So, the horizontal asymptote is:
[tex]\[ y = 1 \][/tex]
### 2.2 Intercepts
#### [tex]\(x\)[/tex]-Intercept:
The [tex]\(x\)[/tex]-intercept occurs when [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ \frac{-3}{x-2} + 1 = 0 \][/tex]
Solving this equation:
[tex]\[ \frac{-3}{x-2} = -1 \][/tex]
[tex]\[ \frac{3}{x-2} = 1 \][/tex]
[tex]\[ 3 = x - 2 \][/tex]
[tex]\[ x = 5 \][/tex]
So, the [tex]\(x\)[/tex]-intercept is:
[tex]\[ (5, 0) \][/tex]
#### [tex]\(y\)[/tex]-Intercept:
The [tex]\(y\)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{-3}{0-2} + 1 \][/tex]
[tex]\[ f(0) = \frac{-3}{-2} + 1 \][/tex]
[tex]\[ f(0) = 1.5 + 1 \][/tex]
[tex]\[ f(0) = 2.5 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is:
[tex]\[ (0, 2.5) \][/tex]
### 2.3 Sketching the Graph
To sketch the graph of [tex]\( f(x) \)[/tex], you should include the following:
- The vertical asymptote at [tex]\( x = 2 \)[/tex]
- The horizontal asymptote at [tex]\( y = 1 \)[/tex]
- The [tex]\( x \)[/tex]-intercept at [tex]\( (5, 0) \)[/tex]
- The [tex]\( y \)[/tex]-intercept at [tex]\( (0, 2.5) \)[/tex]
The graph is a hyperbola that approaches these asymptotes.
### 2.4 Range of [tex]\( y = -f(x) \)[/tex]
Given [tex]\( f(x) = \frac{-3}{x-2} + 1 \)[/tex], the transformation [tex]\( -f(x) \)[/tex] reverses the sign of [tex]\( f(x) \)[/tex]:
[tex]\[ -f(x) = -\left(\frac{-3}{x-2} + 1\right) \][/tex]
[tex]\[ -f(x) = \frac{3}{x-2} - 1 \][/tex]
As [tex]\( x \to \pm\infty \)[/tex], [tex]\(\frac{3}{x-2} \to 0\)[/tex] and thus:
[tex]\[ y = -1 \][/tex]
So, the horizontal asymptote of [tex]\( y = -f(x) \)[/tex] is [tex]\( y = -1 \)[/tex].
The function [tex]\( \frac{3}{x-2} - 1 \)[/tex] can take any real value except [tex]\(-1\)[/tex]. Therefore, the range of [tex]\( y = -f(x) \)[/tex] is:
[tex]\[ (-\infty, -1) \cup (-1, \infty) \][/tex]
### 2.5 Axes of Symmetry
The function [tex]\( f(x) = \frac{-3}{x-2} + 1 \)[/tex] is symmetric about the line [tex]\( x = 2 \)[/tex] because it is centered around the vertical asymptote.
If you consider horizontal symmetry, you can reflect the graph over the horizontal asymptote [tex]\( y = 1 \)[/tex]. Therefore, the equations of the axes of symmetry are:
[tex]\[ x = 2 \][/tex]
[tex]\[ y = 1 \][/tex]
### 2.6 Solving Inequality [tex]\( \frac{-3}{x-2} \leq -1 \)[/tex]
First solve the equality:
[tex]\[ \frac{-3}{x-2} = -1 \][/tex]
[tex]\[ \frac{3}{x-2} = 1 \][/tex]
[tex]\[ 3 = x - 2 \][/tex]
[tex]\[ x = 5 \][/tex]
To solve the inequality [tex]\( \frac{-3}{x-2} \leq -1 \)[/tex]:
Rewriting:
[tex]\[ \frac{3}{x-2} \geq 1 \][/tex]
This inequality holds when:
[tex]\[ 3 \geq x - 2 \][/tex]
[tex]\[ x \leq 5 \][/tex]
Thus, the solution set for the inequality is:
[tex]\[ (-\infty, 5] \][/tex]
### 2.7 Translating [tex]\( f \)[/tex] 3 units to the right and 4 units down
To translate the function [tex]\( f(x) \)[/tex] 3 units to the right, substitute [tex]\( x \)[/tex] with [tex]\( x-3 \)[/tex]:
[tex]\[ f(x-3) = \frac{-3}{(x-3)-2} + 1 = \frac{-3}{x-5} + 1 \][/tex]
Then to translate it 4 units down, subtract 4 from the result:
[tex]\[ h(x) = \frac{-3}{x-5} + 1 - 4 \][/tex]
[tex]\[ h(x) = \frac{-3}{x-5} - 3 \][/tex]
So, the equation of [tex]\( h \)[/tex] is:
[tex]\[ h(x) = \frac{-3}{x-5} - 3 \][/tex]
### 2.1 Asymptotes
#### Vertical Asymptote:
To determine the vertical asymptote, we need to consider the values which make the denominator zero. The given function is:
[tex]\[ f(x) = \frac{-3}{x-2} + 1 \][/tex]
The vertical asymptote occurs when the denominator is zero:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
So, the vertical asymptote is:
[tex]\[ x = 2 \][/tex]
#### Horizontal Asymptote:
To find the horizontal asymptote, we need to analyze the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(\pm\infty\)[/tex].
As [tex]\( x \to \pm\infty \)[/tex], [tex]\(\frac{-3}{x-2} \to 0\)[/tex]. Therefore,
[tex]\[ f(x) \approx 0 + 1 = 1 \][/tex]
So, the horizontal asymptote is:
[tex]\[ y = 1 \][/tex]
### 2.2 Intercepts
#### [tex]\(x\)[/tex]-Intercept:
The [tex]\(x\)[/tex]-intercept occurs when [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ \frac{-3}{x-2} + 1 = 0 \][/tex]
Solving this equation:
[tex]\[ \frac{-3}{x-2} = -1 \][/tex]
[tex]\[ \frac{3}{x-2} = 1 \][/tex]
[tex]\[ 3 = x - 2 \][/tex]
[tex]\[ x = 5 \][/tex]
So, the [tex]\(x\)[/tex]-intercept is:
[tex]\[ (5, 0) \][/tex]
#### [tex]\(y\)[/tex]-Intercept:
The [tex]\(y\)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{-3}{0-2} + 1 \][/tex]
[tex]\[ f(0) = \frac{-3}{-2} + 1 \][/tex]
[tex]\[ f(0) = 1.5 + 1 \][/tex]
[tex]\[ f(0) = 2.5 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is:
[tex]\[ (0, 2.5) \][/tex]
### 2.3 Sketching the Graph
To sketch the graph of [tex]\( f(x) \)[/tex], you should include the following:
- The vertical asymptote at [tex]\( x = 2 \)[/tex]
- The horizontal asymptote at [tex]\( y = 1 \)[/tex]
- The [tex]\( x \)[/tex]-intercept at [tex]\( (5, 0) \)[/tex]
- The [tex]\( y \)[/tex]-intercept at [tex]\( (0, 2.5) \)[/tex]
The graph is a hyperbola that approaches these asymptotes.
### 2.4 Range of [tex]\( y = -f(x) \)[/tex]
Given [tex]\( f(x) = \frac{-3}{x-2} + 1 \)[/tex], the transformation [tex]\( -f(x) \)[/tex] reverses the sign of [tex]\( f(x) \)[/tex]:
[tex]\[ -f(x) = -\left(\frac{-3}{x-2} + 1\right) \][/tex]
[tex]\[ -f(x) = \frac{3}{x-2} - 1 \][/tex]
As [tex]\( x \to \pm\infty \)[/tex], [tex]\(\frac{3}{x-2} \to 0\)[/tex] and thus:
[tex]\[ y = -1 \][/tex]
So, the horizontal asymptote of [tex]\( y = -f(x) \)[/tex] is [tex]\( y = -1 \)[/tex].
The function [tex]\( \frac{3}{x-2} - 1 \)[/tex] can take any real value except [tex]\(-1\)[/tex]. Therefore, the range of [tex]\( y = -f(x) \)[/tex] is:
[tex]\[ (-\infty, -1) \cup (-1, \infty) \][/tex]
### 2.5 Axes of Symmetry
The function [tex]\( f(x) = \frac{-3}{x-2} + 1 \)[/tex] is symmetric about the line [tex]\( x = 2 \)[/tex] because it is centered around the vertical asymptote.
If you consider horizontal symmetry, you can reflect the graph over the horizontal asymptote [tex]\( y = 1 \)[/tex]. Therefore, the equations of the axes of symmetry are:
[tex]\[ x = 2 \][/tex]
[tex]\[ y = 1 \][/tex]
### 2.6 Solving Inequality [tex]\( \frac{-3}{x-2} \leq -1 \)[/tex]
First solve the equality:
[tex]\[ \frac{-3}{x-2} = -1 \][/tex]
[tex]\[ \frac{3}{x-2} = 1 \][/tex]
[tex]\[ 3 = x - 2 \][/tex]
[tex]\[ x = 5 \][/tex]
To solve the inequality [tex]\( \frac{-3}{x-2} \leq -1 \)[/tex]:
Rewriting:
[tex]\[ \frac{3}{x-2} \geq 1 \][/tex]
This inequality holds when:
[tex]\[ 3 \geq x - 2 \][/tex]
[tex]\[ x \leq 5 \][/tex]
Thus, the solution set for the inequality is:
[tex]\[ (-\infty, 5] \][/tex]
### 2.7 Translating [tex]\( f \)[/tex] 3 units to the right and 4 units down
To translate the function [tex]\( f(x) \)[/tex] 3 units to the right, substitute [tex]\( x \)[/tex] with [tex]\( x-3 \)[/tex]:
[tex]\[ f(x-3) = \frac{-3}{(x-3)-2} + 1 = \frac{-3}{x-5} + 1 \][/tex]
Then to translate it 4 units down, subtract 4 from the result:
[tex]\[ h(x) = \frac{-3}{x-5} + 1 - 4 \][/tex]
[tex]\[ h(x) = \frac{-3}{x-5} - 3 \][/tex]
So, the equation of [tex]\( h \)[/tex] is:
[tex]\[ h(x) = \frac{-3}{x-5} - 3 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.