Find detailed and accurate answers to your questions on IDNLearn.com. Get the information you need from our experts, who provide reliable and detailed answers to all your questions.
Sagot :
Sure! Let's tackle each part of the question step-by-step.
#### Part 1
1. Completing the Table:
Let's analyze the given information and fill out the table.
- Pattern 1 has 5 matchsticks.
- For Pattern 2, John added 3 more matchsticks.
Given:
- Pattern 1: 5 matchsticks
- Pattern 2: 5 + 3 = 8 matchsticks
- Pattern 3: 8 + 3 = 11 matchsticks
So, the table should be:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline \begin{tabular}{l} Pattern \\ Number $(n):$ \end{tabular} & 1 & 2 & 3 \\ \hline \begin{tabular}{l} Number of \\ Matchsticks $(P):$ \end{tabular} & 5 & 8 & 11 \\ \hline \end{tabular} \][/tex]
#### Part 2
a. Rewriting the Linear Rule:
In a linear equation, the standard form is [tex]\( y = mx + c \)[/tex].
Using the variables given:
- [tex]\( n \)[/tex] = Pattern Number
- [tex]\( P \)[/tex] = Number of Matchsticks
The linear rule should be:
[tex]\[ P = mn + c \][/tex]
b. Finding the Gradient (m):
The gradient [tex]\( m \)[/tex] is the change in [tex]\( y \)[/tex] (Number of Matchsticks) per change in [tex]\( x \)[/tex] (Pattern Number).
From Pattern 1 to 2:
[tex]\[ \Delta P = 8 - 5 = 3 \][/tex]
[tex]\[ \Delta n = 2 - 1 = 1 \][/tex]
Therefore, the gradient [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{\Delta P}{\Delta n} = \frac{3}{1} = 3 \][/tex]
So, [tex]\( m = 3 \)[/tex].
c. Determining the Constant (c):
The constant [tex]\( c \)[/tex] is the value of [tex]\( P \)[/tex] when [tex]\( n = 0 \)[/tex].
From the equation:
[tex]\[ P = mn + c \][/tex]
Using the first pattern (n = 1, P = 5):
[tex]\[ 5 = 3 \cdot 1 + c \][/tex]
[tex]\[ 5 = 3 + c \][/tex]
[tex]\[ c = 5 - 3 \][/tex]
[tex]\[ c = 2 \][/tex]
So, [tex]\( c = 2 \)[/tex].
d. Rewriting the Linear Equation:
Now that we have the values of [tex]\( m \)[/tex] and [tex]\( c \)[/tex], we can rewrite the equation:
[tex]\[ P = 3n + 2 \][/tex]
This linear equation represents the relationship between the Pattern Number [tex]\( n \)[/tex] and the Number of Matchsticks [tex]\( P \)[/tex].
To summarize:
1. The complete table is:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline \begin{tabular}{l} Pattern \\ Number $(n):$ \end{tabular} & 1 & 2 & 3 \\ \hline \begin{tabular}{l} Number of \\ Matchsticks $(P):$ \end{tabular} & 5 & 8 & 11 \\ \hline \end{tabular} \][/tex]
2. The rewritten linear rule is: [tex]\( P = mn + c \)[/tex]
3. The gradient [tex]\( m \)[/tex] is 3.
4. The constant [tex]\( c \)[/tex] is 2.
5. The final linear equation is: [tex]\( P = 3n + 2 \)[/tex]
#### Part 1
1. Completing the Table:
Let's analyze the given information and fill out the table.
- Pattern 1 has 5 matchsticks.
- For Pattern 2, John added 3 more matchsticks.
Given:
- Pattern 1: 5 matchsticks
- Pattern 2: 5 + 3 = 8 matchsticks
- Pattern 3: 8 + 3 = 11 matchsticks
So, the table should be:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline \begin{tabular}{l} Pattern \\ Number $(n):$ \end{tabular} & 1 & 2 & 3 \\ \hline \begin{tabular}{l} Number of \\ Matchsticks $(P):$ \end{tabular} & 5 & 8 & 11 \\ \hline \end{tabular} \][/tex]
#### Part 2
a. Rewriting the Linear Rule:
In a linear equation, the standard form is [tex]\( y = mx + c \)[/tex].
Using the variables given:
- [tex]\( n \)[/tex] = Pattern Number
- [tex]\( P \)[/tex] = Number of Matchsticks
The linear rule should be:
[tex]\[ P = mn + c \][/tex]
b. Finding the Gradient (m):
The gradient [tex]\( m \)[/tex] is the change in [tex]\( y \)[/tex] (Number of Matchsticks) per change in [tex]\( x \)[/tex] (Pattern Number).
From Pattern 1 to 2:
[tex]\[ \Delta P = 8 - 5 = 3 \][/tex]
[tex]\[ \Delta n = 2 - 1 = 1 \][/tex]
Therefore, the gradient [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{\Delta P}{\Delta n} = \frac{3}{1} = 3 \][/tex]
So, [tex]\( m = 3 \)[/tex].
c. Determining the Constant (c):
The constant [tex]\( c \)[/tex] is the value of [tex]\( P \)[/tex] when [tex]\( n = 0 \)[/tex].
From the equation:
[tex]\[ P = mn + c \][/tex]
Using the first pattern (n = 1, P = 5):
[tex]\[ 5 = 3 \cdot 1 + c \][/tex]
[tex]\[ 5 = 3 + c \][/tex]
[tex]\[ c = 5 - 3 \][/tex]
[tex]\[ c = 2 \][/tex]
So, [tex]\( c = 2 \)[/tex].
d. Rewriting the Linear Equation:
Now that we have the values of [tex]\( m \)[/tex] and [tex]\( c \)[/tex], we can rewrite the equation:
[tex]\[ P = 3n + 2 \][/tex]
This linear equation represents the relationship between the Pattern Number [tex]\( n \)[/tex] and the Number of Matchsticks [tex]\( P \)[/tex].
To summarize:
1. The complete table is:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline \begin{tabular}{l} Pattern \\ Number $(n):$ \end{tabular} & 1 & 2 & 3 \\ \hline \begin{tabular}{l} Number of \\ Matchsticks $(P):$ \end{tabular} & 5 & 8 & 11 \\ \hline \end{tabular} \][/tex]
2. The rewritten linear rule is: [tex]\( P = mn + c \)[/tex]
3. The gradient [tex]\( m \)[/tex] is 3.
4. The constant [tex]\( c \)[/tex] is 2.
5. The final linear equation is: [tex]\( P = 3n + 2 \)[/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.