Experience the convenience of getting your questions answered at IDNLearn.com. Join our community to receive prompt, thorough responses from knowledgeable experts.
Sagot :
Sure! Let's tackle each part of the question step-by-step.
#### Part 1
1. Completing the Table:
Let's analyze the given information and fill out the table.
- Pattern 1 has 5 matchsticks.
- For Pattern 2, John added 3 more matchsticks.
Given:
- Pattern 1: 5 matchsticks
- Pattern 2: 5 + 3 = 8 matchsticks
- Pattern 3: 8 + 3 = 11 matchsticks
So, the table should be:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline \begin{tabular}{l} Pattern \\ Number $(n):$ \end{tabular} & 1 & 2 & 3 \\ \hline \begin{tabular}{l} Number of \\ Matchsticks $(P):$ \end{tabular} & 5 & 8 & 11 \\ \hline \end{tabular} \][/tex]
#### Part 2
a. Rewriting the Linear Rule:
In a linear equation, the standard form is [tex]\( y = mx + c \)[/tex].
Using the variables given:
- [tex]\( n \)[/tex] = Pattern Number
- [tex]\( P \)[/tex] = Number of Matchsticks
The linear rule should be:
[tex]\[ P = mn + c \][/tex]
b. Finding the Gradient (m):
The gradient [tex]\( m \)[/tex] is the change in [tex]\( y \)[/tex] (Number of Matchsticks) per change in [tex]\( x \)[/tex] (Pattern Number).
From Pattern 1 to 2:
[tex]\[ \Delta P = 8 - 5 = 3 \][/tex]
[tex]\[ \Delta n = 2 - 1 = 1 \][/tex]
Therefore, the gradient [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{\Delta P}{\Delta n} = \frac{3}{1} = 3 \][/tex]
So, [tex]\( m = 3 \)[/tex].
c. Determining the Constant (c):
The constant [tex]\( c \)[/tex] is the value of [tex]\( P \)[/tex] when [tex]\( n = 0 \)[/tex].
From the equation:
[tex]\[ P = mn + c \][/tex]
Using the first pattern (n = 1, P = 5):
[tex]\[ 5 = 3 \cdot 1 + c \][/tex]
[tex]\[ 5 = 3 + c \][/tex]
[tex]\[ c = 5 - 3 \][/tex]
[tex]\[ c = 2 \][/tex]
So, [tex]\( c = 2 \)[/tex].
d. Rewriting the Linear Equation:
Now that we have the values of [tex]\( m \)[/tex] and [tex]\( c \)[/tex], we can rewrite the equation:
[tex]\[ P = 3n + 2 \][/tex]
This linear equation represents the relationship between the Pattern Number [tex]\( n \)[/tex] and the Number of Matchsticks [tex]\( P \)[/tex].
To summarize:
1. The complete table is:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline \begin{tabular}{l} Pattern \\ Number $(n):$ \end{tabular} & 1 & 2 & 3 \\ \hline \begin{tabular}{l} Number of \\ Matchsticks $(P):$ \end{tabular} & 5 & 8 & 11 \\ \hline \end{tabular} \][/tex]
2. The rewritten linear rule is: [tex]\( P = mn + c \)[/tex]
3. The gradient [tex]\( m \)[/tex] is 3.
4. The constant [tex]\( c \)[/tex] is 2.
5. The final linear equation is: [tex]\( P = 3n + 2 \)[/tex]
#### Part 1
1. Completing the Table:
Let's analyze the given information and fill out the table.
- Pattern 1 has 5 matchsticks.
- For Pattern 2, John added 3 more matchsticks.
Given:
- Pattern 1: 5 matchsticks
- Pattern 2: 5 + 3 = 8 matchsticks
- Pattern 3: 8 + 3 = 11 matchsticks
So, the table should be:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline \begin{tabular}{l} Pattern \\ Number $(n):$ \end{tabular} & 1 & 2 & 3 \\ \hline \begin{tabular}{l} Number of \\ Matchsticks $(P):$ \end{tabular} & 5 & 8 & 11 \\ \hline \end{tabular} \][/tex]
#### Part 2
a. Rewriting the Linear Rule:
In a linear equation, the standard form is [tex]\( y = mx + c \)[/tex].
Using the variables given:
- [tex]\( n \)[/tex] = Pattern Number
- [tex]\( P \)[/tex] = Number of Matchsticks
The linear rule should be:
[tex]\[ P = mn + c \][/tex]
b. Finding the Gradient (m):
The gradient [tex]\( m \)[/tex] is the change in [tex]\( y \)[/tex] (Number of Matchsticks) per change in [tex]\( x \)[/tex] (Pattern Number).
From Pattern 1 to 2:
[tex]\[ \Delta P = 8 - 5 = 3 \][/tex]
[tex]\[ \Delta n = 2 - 1 = 1 \][/tex]
Therefore, the gradient [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{\Delta P}{\Delta n} = \frac{3}{1} = 3 \][/tex]
So, [tex]\( m = 3 \)[/tex].
c. Determining the Constant (c):
The constant [tex]\( c \)[/tex] is the value of [tex]\( P \)[/tex] when [tex]\( n = 0 \)[/tex].
From the equation:
[tex]\[ P = mn + c \][/tex]
Using the first pattern (n = 1, P = 5):
[tex]\[ 5 = 3 \cdot 1 + c \][/tex]
[tex]\[ 5 = 3 + c \][/tex]
[tex]\[ c = 5 - 3 \][/tex]
[tex]\[ c = 2 \][/tex]
So, [tex]\( c = 2 \)[/tex].
d. Rewriting the Linear Equation:
Now that we have the values of [tex]\( m \)[/tex] and [tex]\( c \)[/tex], we can rewrite the equation:
[tex]\[ P = 3n + 2 \][/tex]
This linear equation represents the relationship between the Pattern Number [tex]\( n \)[/tex] and the Number of Matchsticks [tex]\( P \)[/tex].
To summarize:
1. The complete table is:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline \begin{tabular}{l} Pattern \\ Number $(n):$ \end{tabular} & 1 & 2 & 3 \\ \hline \begin{tabular}{l} Number of \\ Matchsticks $(P):$ \end{tabular} & 5 & 8 & 11 \\ \hline \end{tabular} \][/tex]
2. The rewritten linear rule is: [tex]\( P = mn + c \)[/tex]
3. The gradient [tex]\( m \)[/tex] is 3.
4. The constant [tex]\( c \)[/tex] is 2.
5. The final linear equation is: [tex]\( P = 3n + 2 \)[/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.