Discover new perspectives and gain insights with IDNLearn.com's diverse answers. Join our community to access reliable and comprehensive responses to your questions from experienced professionals.
Sagot :
To determine the values of [tex]\( n \)[/tex] and [tex]\( a \)[/tex] given the first three terms of the expansion of [tex]\( (1 + ax)^n \)[/tex], we start with the binomial expansion formula:
[tex]\[ (1 + ax)^n = \sum_{k=0}^{n} \binom{n}{k} (ax)^k \][/tex]
The first three terms of this expansion are:
[tex]\[ \binom{n}{0} (ax)^0 = 1, \quad \binom{n}{1} (ax)^1 = nax, \quad \binom{n}{2} (ax)^2 = \frac{n(n-1)}{2} a^2 x^2 \][/tex]
Given that the first three terms of the expansion are [tex]\( 1 + 12x + 64x^2 \)[/tex], we can match these coefficients with our expansion:
1. For the constant term:
[tex]\[ \binom{n}{0} (ax)^0 = 1 \quad \Rightarrow \quad 1 = 1 \][/tex]
2. For the coefficient of [tex]\( x \)[/tex]:
[tex]\[ \binom{n}{1} (ax)^1 = nax \quad \Rightarrow \quad na = 12 \][/tex]
3. For the coefficient of [tex]\( x^2 \)[/tex]:
[tex]\[ \binom{n}{2} (ax)^2 = \frac{n(n-1)}{2} a^2 x^2 \quad \Rightarrow \quad \frac{n(n-1)}{2} a^2 = 64 \][/tex]
Now, solve these equations step-by-step.
First, from [tex]\( na = 12 \)[/tex], we solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{12}{n} \][/tex]
Next, substitute [tex]\( a \)[/tex] into the equation for the [tex]\( x^2 \)[/tex] term:
[tex]\[ \frac{n(n-1)}{2} \left( \frac{12}{n} \right)^2 = 64 \][/tex]
Simplify the equation:
[tex]\[ \frac{n(n-1)}{2} \cdot \frac{144}{n^2} = 64 \quad \Rightarrow \quad \frac{144(n-1)}{2n} = 64 \quad \Rightarrow \quad \frac{72(n-1)}{n} = 64 \][/tex]
Multiply both sides by [tex]\( n \)[/tex]:
[tex]\[ 72(n-1) = 64n \quad \Rightarrow \quad 72n - 72 = 64n \quad \Rightarrow \quad 8n = 72 \quad \Rightarrow \quad n = 9 \][/tex]
Now, substitute [tex]\( n = 9 \)[/tex] back into the equation [tex]\( na = 12 \)[/tex]:
[tex]\[ 9a = 12 \quad \Rightarrow \quad a = \frac{12}{9} = \frac{4}{3} \][/tex]
Therefore, the values of [tex]\( n \)[/tex] and [tex]\( a \)[/tex] are:
[tex]\[ n = 9 \quad \text{and} \quad a = \frac{4}{3} \][/tex]
[tex]\[ (1 + ax)^n = \sum_{k=0}^{n} \binom{n}{k} (ax)^k \][/tex]
The first three terms of this expansion are:
[tex]\[ \binom{n}{0} (ax)^0 = 1, \quad \binom{n}{1} (ax)^1 = nax, \quad \binom{n}{2} (ax)^2 = \frac{n(n-1)}{2} a^2 x^2 \][/tex]
Given that the first three terms of the expansion are [tex]\( 1 + 12x + 64x^2 \)[/tex], we can match these coefficients with our expansion:
1. For the constant term:
[tex]\[ \binom{n}{0} (ax)^0 = 1 \quad \Rightarrow \quad 1 = 1 \][/tex]
2. For the coefficient of [tex]\( x \)[/tex]:
[tex]\[ \binom{n}{1} (ax)^1 = nax \quad \Rightarrow \quad na = 12 \][/tex]
3. For the coefficient of [tex]\( x^2 \)[/tex]:
[tex]\[ \binom{n}{2} (ax)^2 = \frac{n(n-1)}{2} a^2 x^2 \quad \Rightarrow \quad \frac{n(n-1)}{2} a^2 = 64 \][/tex]
Now, solve these equations step-by-step.
First, from [tex]\( na = 12 \)[/tex], we solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{12}{n} \][/tex]
Next, substitute [tex]\( a \)[/tex] into the equation for the [tex]\( x^2 \)[/tex] term:
[tex]\[ \frac{n(n-1)}{2} \left( \frac{12}{n} \right)^2 = 64 \][/tex]
Simplify the equation:
[tex]\[ \frac{n(n-1)}{2} \cdot \frac{144}{n^2} = 64 \quad \Rightarrow \quad \frac{144(n-1)}{2n} = 64 \quad \Rightarrow \quad \frac{72(n-1)}{n} = 64 \][/tex]
Multiply both sides by [tex]\( n \)[/tex]:
[tex]\[ 72(n-1) = 64n \quad \Rightarrow \quad 72n - 72 = 64n \quad \Rightarrow \quad 8n = 72 \quad \Rightarrow \quad n = 9 \][/tex]
Now, substitute [tex]\( n = 9 \)[/tex] back into the equation [tex]\( na = 12 \)[/tex]:
[tex]\[ 9a = 12 \quad \Rightarrow \quad a = \frac{12}{9} = \frac{4}{3} \][/tex]
Therefore, the values of [tex]\( n \)[/tex] and [tex]\( a \)[/tex] are:
[tex]\[ n = 9 \quad \text{and} \quad a = \frac{4}{3} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.