IDNLearn.com is your reliable source for expert answers and community insights. Get prompt and accurate answers to your questions from our experts who are always ready to help.
Sagot :
To differentiate the given function [tex]\( f(x, y) = \frac{1}{x^2 - 12} \)[/tex] with respect to [tex]\( x \)[/tex] and [tex]\( y \)[/tex], let's go through the process step-by-step:
### Differentiation with respect to [tex]\( x \)[/tex]:
First, recognize that [tex]\( y \)[/tex] does not appear in [tex]\( f(x, y) \)[/tex], so differentiation with respect to [tex]\( x \)[/tex] will be treated as if [tex]\( f \)[/tex] is a function of [tex]\( x \)[/tex] alone.
Given:
[tex]\[ f(x, y) = \frac{1}{x^2 - 12} \][/tex]
We need to find [tex]\(\frac{\partial f}{\partial x}\)[/tex]. The function [tex]\( f(x, y) \)[/tex] can be rewritten as:
[tex]\[ f(x, y) = (x^2 - 12)^{-1} \][/tex]
Using the chain rule and the power rule for differentiation, we get:
[tex]\[ \frac{\partial f}{\partial x} = \frac{d}{dx}\left((x^2 - 12)^{-1}\right) \][/tex]
Let [tex]\( u = x^2 - 12 \)[/tex], hence [tex]\( f = u^{-1} \)[/tex].
By the chain rule:
[tex]\[ \frac{d}{dx}\left(u^{-1}\right) = -u^{-2} \cdot \frac{du}{dx} \][/tex]
Differentiate [tex]\( u = x^2 - 12 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{du}{dx} = 2x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left((x^2 - 12)^{-1}\right) = - (x^2 - 12)^{-2} \cdot 2x \][/tex]
Thus,
[tex]\[ \frac{\partial f}{\partial x} = - \frac{2x}{(x^2 - 12)^2} \][/tex]
### Differentiation with respect to [tex]\( y \)[/tex]:
Since [tex]\( f(x, y) = \frac{1}{x^2 - 12} \)[/tex] does not contain [tex]\( y \)[/tex], the partial derivative with respect to [tex]\( y \)[/tex] is straightforward.
[tex]\[ \frac{\partial f}{\partial y} = 0 \][/tex]
### Summary:
The partial derivatives of the given function are:
[tex]\[ \frac{\partial f}{\partial x} = -\frac{2x}{(x^2 - 12)^2} \][/tex]
[tex]\[ \frac{\partial f}{\partial y} = 0 \][/tex]
Therefore, the solution in a compact form is:
[tex]\[ \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) = \left( -\frac{2x}{(x^2 - 12)^2}, 0 \right). \][/tex]
### Differentiation with respect to [tex]\( x \)[/tex]:
First, recognize that [tex]\( y \)[/tex] does not appear in [tex]\( f(x, y) \)[/tex], so differentiation with respect to [tex]\( x \)[/tex] will be treated as if [tex]\( f \)[/tex] is a function of [tex]\( x \)[/tex] alone.
Given:
[tex]\[ f(x, y) = \frac{1}{x^2 - 12} \][/tex]
We need to find [tex]\(\frac{\partial f}{\partial x}\)[/tex]. The function [tex]\( f(x, y) \)[/tex] can be rewritten as:
[tex]\[ f(x, y) = (x^2 - 12)^{-1} \][/tex]
Using the chain rule and the power rule for differentiation, we get:
[tex]\[ \frac{\partial f}{\partial x} = \frac{d}{dx}\left((x^2 - 12)^{-1}\right) \][/tex]
Let [tex]\( u = x^2 - 12 \)[/tex], hence [tex]\( f = u^{-1} \)[/tex].
By the chain rule:
[tex]\[ \frac{d}{dx}\left(u^{-1}\right) = -u^{-2} \cdot \frac{du}{dx} \][/tex]
Differentiate [tex]\( u = x^2 - 12 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{du}{dx} = 2x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left((x^2 - 12)^{-1}\right) = - (x^2 - 12)^{-2} \cdot 2x \][/tex]
Thus,
[tex]\[ \frac{\partial f}{\partial x} = - \frac{2x}{(x^2 - 12)^2} \][/tex]
### Differentiation with respect to [tex]\( y \)[/tex]:
Since [tex]\( f(x, y) = \frac{1}{x^2 - 12} \)[/tex] does not contain [tex]\( y \)[/tex], the partial derivative with respect to [tex]\( y \)[/tex] is straightforward.
[tex]\[ \frac{\partial f}{\partial y} = 0 \][/tex]
### Summary:
The partial derivatives of the given function are:
[tex]\[ \frac{\partial f}{\partial x} = -\frac{2x}{(x^2 - 12)^2} \][/tex]
[tex]\[ \frac{\partial f}{\partial y} = 0 \][/tex]
Therefore, the solution in a compact form is:
[tex]\[ \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) = \left( -\frac{2x}{(x^2 - 12)^2}, 0 \right). \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.