Join IDNLearn.com and start getting the answers you've been searching for. Ask your questions and get detailed, reliable answers from our community of experienced experts.

Use De Moivre's theorem to find the square of the following complex numbers:

i) [tex]2 + 2\sqrt{3} i[/tex]

ii) [tex]-2 - 2\sqrt{3} i[/tex]

iii) [tex]-\frac{1}{2} + i \frac{\sqrt{3}}{2}[/tex]


Sagot :

Sure, let's apply De Moivre's theorem to find the square of the given complex numbers step by step.

### Complex number (ii) [tex]\( 2 + 2\sqrt{3} i \)[/tex]:

1. Convert to polar form:
- Magnitude (r): [tex]\( r = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{4 + 12} = \sqrt{16} = 4 \)[/tex]
- Argument (θ): [tex]\( \theta = \tan^{-1}\left(\frac{2\sqrt{3}}{2}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \)[/tex]

So, [tex]\( 2 + 2\sqrt{3}i = 4(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) \)[/tex].

2. Apply De Moivre's theorem:
[tex]\[ (4 \cdot (\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}))^2 = 4^2 (\cos 2 \cdot \frac{\pi}{3} + i \sin 2 \cdot \frac{\pi}{3}) \][/tex]
[tex]\[ = 16 (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}) \][/tex]

3. Evaluate:
[tex]\[ \cos \frac{2\pi}{3} = -\frac{1}{2}, \quad \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ 16 \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = 16 \cdot -\frac{1}{2} + 16 \cdot i \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ = -8 + 8\sqrt{3} i \][/tex]

Thus, [tex]\( (2 + 2 \sqrt{3} i)^2 = -8 + 8\sqrt{3}i \)[/tex]. Numerically, we know it is approximately [tex]\( -8 + 13.85641i \)[/tex].

### Complex number (iii) [tex]\( -2 - 2 \sqrt{3} i \)[/tex]:

1. Convert to polar form:
- Magnitude (r): [tex]\( r = \sqrt{(-2)^2 + (-2\sqrt{3})^2} = 4 \)[/tex]
- Argument (θ): [tex]\( \theta = \tan^{-1}\left(\frac{-2\sqrt{3}}{-2}\right) = \tan^{-1}(\sqrt{3}) \)[/tex]

Since it lies in the third quadrant, [tex]\(\theta = \pi + \frac{\pi}{3} = \frac{4\pi}{3} \)[/tex]

So, [tex]\( -2 - 2\sqrt{3}i = 4(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}) \)[/tex].

2. Apply De Moivre's theorem:
[tex]\[ (4 \cdot (\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}))^2 = 16 (\cos \frac{8\pi}{3} + i \sin \frac{8\pi}{3}) \][/tex]

3. Evaluate:
[tex]\(\cos \frac{8\pi}{3} = -\frac{1}{2}, \quad \sin \frac{8\pi}{3} = \frac{\sqrt{3}}{2}\)[/tex]
[tex]\[ 16 \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = -8 + 8\sqrt{3}i \][/tex]

Thus, [tex]\( (-2 - 2 \sqrt{3} i)^2 = -8 + 8\sqrt{3}i \)[/tex]. Numerically, it is approximately [tex]\( -8 + 13.85641i \)[/tex].

### Complex number (v) [tex]\( -\frac{1}{2} + i \frac{\sqrt{3}}{2} \)[/tex]:

1. Convert to polar form:
- Magnitude (r): [tex]\( r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1 \)[/tex]
- Argument (θ): [tex]\( \theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(-\sqrt{3}) = \frac{2\pi}{3} \)[/tex]

So, [tex]\( -\frac{1}{2} + \frac{\sqrt{3}i}{2} = 1 (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}) \)[/tex].

2. Apply De Moivre's theorem:
[tex]\[ (1 \cdot (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}))^2 = 1 (\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}) \][/tex]

3. Evaluate:
[tex]\(\cos \frac{4\pi}{3} = -\frac{1}{2}, \quad \sin \frac{4\pi}{3} = -\frac{\sqrt{3}}{2}\)[/tex]
[tex]\[ = -\frac{1}{2} - i \frac{\sqrt{3}}{2} \][/tex]

Thus, [tex]\( \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^2 = -\frac{1}{2} - i \frac{\sqrt{3}}{2} \)[/tex]. Numerically, it is approximately [tex]\( -0.5 - 0.8660i \)[/tex].

To summarize:
- [tex]\((2 + 2 \sqrt{3} i)^2 = -8 + 13.85641i\)[/tex]
- [tex]\((-2 - 2 \sqrt{3} i)^2 = -8 + 13.85641i\)[/tex]
- [tex]\(\left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^2 = -0.5 - 0.8660i\)[/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.