IDNLearn.com provides a seamless experience for finding accurate answers. Join our knowledgeable community and get detailed, reliable answers to all your questions.
Sagot :
To solve the differential equation [tex]\(\left(1+e^{2 \theta}\right) d \rho+2 \rho e^{2 \theta} d \theta=0\)[/tex], let's proceed step-by-step.
First, we rewrite the given differential equation:
[tex]\[ (1+e^{2 \theta}) \, d \rho + 2 \rho e^{2 \theta} \, d \theta = 0. \][/tex]
This form suggests a method of separation of variables or recognizing it as an exact differential equation. However, we'll try to separate the variables first.
Let's isolate [tex]\(d \rho\)[/tex]:
[tex]\[ (1 + e^{2 \theta}) \, d \rho = -2 \rho e^{2 \theta} \, d \theta. \][/tex]
Next, divide both sides by [tex]\((1 + e^{2 \theta}) \rho\)[/tex]:
[tex]\[ \frac{d \rho}{\rho} = -\frac{2 e^{2 \theta}}{1 + e^{2 \theta}} \, d \theta. \][/tex]
We now have the variables separated. Integrate both sides:
[tex]\[ \int \frac{1}{\rho} \, d \rho = \int -\frac{2 e^{2 \theta}}{1 + e^{2 \theta}} \, d \theta. \][/tex]
The left side integrates to:
[tex]\[ \ln |\rho|. \][/tex]
Now, for the right side, we simplify the integrand using a substitution. Let [tex]\(u = 1 + e^{2 \theta}\)[/tex]. Then [tex]\(du = 2 e^{2 \theta} d \theta\)[/tex].
This transforms the right side integral into:
[tex]\[ \int -\frac{2 e^{2 \theta}}{1 + e^{2 \theta}} \, d \theta = \int -\frac{1}{u} \, du. \][/tex]
Integrate the right side:
[tex]\[ \int -\frac{1}{u} \, du = -\ln |u|. \][/tex]
Substituting back [tex]\(u = 1 + e^{2 \theta}\)[/tex]:
[tex]\[ -\ln |1 + e^{2 \theta}|. \][/tex]
Combine the results of the integrals:
[tex]\[ \ln |\rho| = -\ln |1 + e^{2 \theta}| + C. \][/tex]
Exponentiate both sides to solve for [tex]\(\rho\)[/tex]:
[tex]\[ |\rho| = e^{-\ln |1 + e^{2 \theta}| + C} = e^C e^{-\ln |1 + e^{2 \theta}|} \approx k \cdot \frac{1}{1 + e^{2 \theta}}. \][/tex]
Given that the absolute value of [tex]\(\rho\)[/tex] can be positive or negative, we remove the absolute value and include a constant factor [tex]\(k\)[/tex]:
[tex]\[ \rho = \frac{k}{1 + e^{2 \theta}}. \][/tex]
To match with the provided options, we simplify the form:
[tex]\[ \rho (1 + e^{2 \theta}) = k. \][/tex]
Thus, the correct solution is:
[tex]\[ \boxed{\rho (1 + e^{2 \theta}) = k}. \][/tex]
So, the correct answer is option (a):
[tex]\[ \rho e^{2 \theta} + \rho = k. \][/tex]
First, we rewrite the given differential equation:
[tex]\[ (1+e^{2 \theta}) \, d \rho + 2 \rho e^{2 \theta} \, d \theta = 0. \][/tex]
This form suggests a method of separation of variables or recognizing it as an exact differential equation. However, we'll try to separate the variables first.
Let's isolate [tex]\(d \rho\)[/tex]:
[tex]\[ (1 + e^{2 \theta}) \, d \rho = -2 \rho e^{2 \theta} \, d \theta. \][/tex]
Next, divide both sides by [tex]\((1 + e^{2 \theta}) \rho\)[/tex]:
[tex]\[ \frac{d \rho}{\rho} = -\frac{2 e^{2 \theta}}{1 + e^{2 \theta}} \, d \theta. \][/tex]
We now have the variables separated. Integrate both sides:
[tex]\[ \int \frac{1}{\rho} \, d \rho = \int -\frac{2 e^{2 \theta}}{1 + e^{2 \theta}} \, d \theta. \][/tex]
The left side integrates to:
[tex]\[ \ln |\rho|. \][/tex]
Now, for the right side, we simplify the integrand using a substitution. Let [tex]\(u = 1 + e^{2 \theta}\)[/tex]. Then [tex]\(du = 2 e^{2 \theta} d \theta\)[/tex].
This transforms the right side integral into:
[tex]\[ \int -\frac{2 e^{2 \theta}}{1 + e^{2 \theta}} \, d \theta = \int -\frac{1}{u} \, du. \][/tex]
Integrate the right side:
[tex]\[ \int -\frac{1}{u} \, du = -\ln |u|. \][/tex]
Substituting back [tex]\(u = 1 + e^{2 \theta}\)[/tex]:
[tex]\[ -\ln |1 + e^{2 \theta}|. \][/tex]
Combine the results of the integrals:
[tex]\[ \ln |\rho| = -\ln |1 + e^{2 \theta}| + C. \][/tex]
Exponentiate both sides to solve for [tex]\(\rho\)[/tex]:
[tex]\[ |\rho| = e^{-\ln |1 + e^{2 \theta}| + C} = e^C e^{-\ln |1 + e^{2 \theta}|} \approx k \cdot \frac{1}{1 + e^{2 \theta}}. \][/tex]
Given that the absolute value of [tex]\(\rho\)[/tex] can be positive or negative, we remove the absolute value and include a constant factor [tex]\(k\)[/tex]:
[tex]\[ \rho = \frac{k}{1 + e^{2 \theta}}. \][/tex]
To match with the provided options, we simplify the form:
[tex]\[ \rho (1 + e^{2 \theta}) = k. \][/tex]
Thus, the correct solution is:
[tex]\[ \boxed{\rho (1 + e^{2 \theta}) = k}. \][/tex]
So, the correct answer is option (a):
[tex]\[ \rho e^{2 \theta} + \rho = k. \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.