IDNLearn.com provides a seamless experience for finding accurate answers. Join our knowledgeable community and get detailed, reliable answers to all your questions.

Solve [tex](1+e^{2 \theta}) d \rho + 2 \rho e^{2 \theta} d \theta = 0[/tex].

A. [tex]\rho e^{2 \theta} + \rho = k[/tex]
B. [tex]\rho^2 - k e^{2 \theta} = \theta^2[/tex]
C. [tex]\rho = \theta e^{2 \theta} + k[/tex]
D. [tex]\rho = \theta (1+e^{2 \theta}) + k[/tex]


Sagot :

To solve the differential equation [tex]\(\left(1+e^{2 \theta}\right) d \rho+2 \rho e^{2 \theta} d \theta=0\)[/tex], let's proceed step-by-step.

First, we rewrite the given differential equation:
[tex]\[ (1+e^{2 \theta}) \, d \rho + 2 \rho e^{2 \theta} \, d \theta = 0. \][/tex]

This form suggests a method of separation of variables or recognizing it as an exact differential equation. However, we'll try to separate the variables first.

Let's isolate [tex]\(d \rho\)[/tex]:
[tex]\[ (1 + e^{2 \theta}) \, d \rho = -2 \rho e^{2 \theta} \, d \theta. \][/tex]

Next, divide both sides by [tex]\((1 + e^{2 \theta}) \rho\)[/tex]:
[tex]\[ \frac{d \rho}{\rho} = -\frac{2 e^{2 \theta}}{1 + e^{2 \theta}} \, d \theta. \][/tex]

We now have the variables separated. Integrate both sides:
[tex]\[ \int \frac{1}{\rho} \, d \rho = \int -\frac{2 e^{2 \theta}}{1 + e^{2 \theta}} \, d \theta. \][/tex]

The left side integrates to:
[tex]\[ \ln |\rho|. \][/tex]

Now, for the right side, we simplify the integrand using a substitution. Let [tex]\(u = 1 + e^{2 \theta}\)[/tex]. Then [tex]\(du = 2 e^{2 \theta} d \theta\)[/tex].

This transforms the right side integral into:
[tex]\[ \int -\frac{2 e^{2 \theta}}{1 + e^{2 \theta}} \, d \theta = \int -\frac{1}{u} \, du. \][/tex]

Integrate the right side:
[tex]\[ \int -\frac{1}{u} \, du = -\ln |u|. \][/tex]

Substituting back [tex]\(u = 1 + e^{2 \theta}\)[/tex]:
[tex]\[ -\ln |1 + e^{2 \theta}|. \][/tex]

Combine the results of the integrals:
[tex]\[ \ln |\rho| = -\ln |1 + e^{2 \theta}| + C. \][/tex]

Exponentiate both sides to solve for [tex]\(\rho\)[/tex]:
[tex]\[ |\rho| = e^{-\ln |1 + e^{2 \theta}| + C} = e^C e^{-\ln |1 + e^{2 \theta}|} \approx k \cdot \frac{1}{1 + e^{2 \theta}}. \][/tex]

Given that the absolute value of [tex]\(\rho\)[/tex] can be positive or negative, we remove the absolute value and include a constant factor [tex]\(k\)[/tex]:
[tex]\[ \rho = \frac{k}{1 + e^{2 \theta}}. \][/tex]

To match with the provided options, we simplify the form:
[tex]\[ \rho (1 + e^{2 \theta}) = k. \][/tex]

Thus, the correct solution is:
[tex]\[ \boxed{\rho (1 + e^{2 \theta}) = k}. \][/tex]

So, the correct answer is option (a):
[tex]\[ \rho e^{2 \theta} + \rho = k. \][/tex]