Join the IDNLearn.com community and start finding the answers you need today. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.
Sagot :
Sure, let's prove that if [tex]\(\tan \theta = \frac{2xy}{x^2 - y^2}\)[/tex], then [tex]\(\sin \theta = \frac{2xy}{x^2 + y^2}\)[/tex].
Step-by-Step Proof:
We start with the given identity for [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{2xy}{x^2 - y^2} \][/tex]
We know from trigonometric identities that:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
Let [tex]\(\sin \theta = \sin \theta\)[/tex] and [tex]\(\cos \theta = \cos \theta\)[/tex]. Then:
[tex]\[ \frac{\sin \theta}{\cos \theta} = \frac{2xy}{x^2 - y^2} \][/tex]
Cross-multiplying gives us:
[tex]\[ \sin \theta (x^2 - y^2) = 2xy \cos \theta \][/tex]
To express [tex]\(\sin \theta\)[/tex], we need another trigonometric identity. We use the Pythagorean identity:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
Our goal is to find [tex]\(\sin \theta\)[/tex]. Let's isolate [tex]\(\sin \theta\)[/tex] in terms of [tex]\(\tan \theta\)[/tex]:
First, squaring both sides of [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan^2 \theta = \left(\frac{2xy}{x^2 - y^2}\right)^2 \][/tex]
We know that [tex]\(\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}\)[/tex]:
[tex]\[ \left(\frac{\sin \theta}{\cos \theta}\right)^2 = \left(\frac{2xy}{x^2 - y^2}\right)^2 \][/tex]
This simplifies to:
[tex]\[ \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{4x^2 y^2}{(x^2 - y^2)^2} \][/tex]
Let [tex]\(A = \frac{4x^2 y^2}{(x^2 - y^2)^2}\)[/tex]. Thus,
[tex]\[ \frac{\sin^2 \theta}{\cos^2 \theta} = A \][/tex]
And using the Pythagorean identity:
[tex]\[ \sin^2 \theta = A \cos^2 \theta \][/tex]
We substitute back for [tex]\(\cos^2 \theta\)[/tex]:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta \][/tex]
So:
[tex]\[ \sin^2 \theta = A (1 - \sin^2 \theta) \][/tex]
Therefore:
[tex]\[ \sin^2 \theta = A - A \sin^2 \theta \][/tex]
Solving for [tex]\(\sin^2 \theta\)[/tex]:
[tex]\[ \sin^2 \theta(1 + A) = A \][/tex]
And:
[tex]\[ \sin^2 \theta = \frac{A}{1 + A} \][/tex]
Recalling the value of [tex]\(A\)[/tex]:
[tex]\[ A = \frac{4 x^2 y^2}{(x^2 - y^2)^2} \][/tex]
Substitute [tex]\(A\)[/tex]:
[tex]\[ \sin^2 \theta = \frac{\frac{4 x^2 y^2}{(x^2 - y^2)^2}}{1 + \frac{4 x^2 y^2}{(x^2 - y^2)^2}} \][/tex]
Now simplify the denominator:
[tex]\[ \sin^2 \theta = \frac{4 x^2 y^2}{(x^2 - y^2)^2 + 4 x^2 y^2} \][/tex]
Simplify the terms in the denominator:
[tex]\[ \sin^2 \theta = \frac{4 x^2 y^2}{x^4 - 2 x^2 y^2 + y^4 + 4 x^2 y^2} \][/tex]
This results in:
[tex]\[ \sin^2 \theta = \frac{4 x^2 y^2}{x^4 + 2 x^2 y^2 + y^4} \][/tex]
Notice that [tex]\(x^4 + 2 x^2 y^2 + y^4\)[/tex] can be factored as:
[tex]\[ \sin^2 \theta = \frac{4 x^2 y^2}{(x^2 + y^2)^2} \][/tex]
So:
[tex]\[ \sin^2 \theta = \left(\frac{2 x y}{x^2 + y^2}\right)^2 \][/tex]
Taking the square root of both sides:
[tex]\[ \sin \theta = \frac{2 x y}{x^2 + y^2} \][/tex]
Thus, we have proven:
[tex]\[ \sin \theta = \frac{2xy}{x^2 + y^2} \][/tex]
Step-by-Step Proof:
We start with the given identity for [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{2xy}{x^2 - y^2} \][/tex]
We know from trigonometric identities that:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
Let [tex]\(\sin \theta = \sin \theta\)[/tex] and [tex]\(\cos \theta = \cos \theta\)[/tex]. Then:
[tex]\[ \frac{\sin \theta}{\cos \theta} = \frac{2xy}{x^2 - y^2} \][/tex]
Cross-multiplying gives us:
[tex]\[ \sin \theta (x^2 - y^2) = 2xy \cos \theta \][/tex]
To express [tex]\(\sin \theta\)[/tex], we need another trigonometric identity. We use the Pythagorean identity:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
Our goal is to find [tex]\(\sin \theta\)[/tex]. Let's isolate [tex]\(\sin \theta\)[/tex] in terms of [tex]\(\tan \theta\)[/tex]:
First, squaring both sides of [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan^2 \theta = \left(\frac{2xy}{x^2 - y^2}\right)^2 \][/tex]
We know that [tex]\(\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}\)[/tex]:
[tex]\[ \left(\frac{\sin \theta}{\cos \theta}\right)^2 = \left(\frac{2xy}{x^2 - y^2}\right)^2 \][/tex]
This simplifies to:
[tex]\[ \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{4x^2 y^2}{(x^2 - y^2)^2} \][/tex]
Let [tex]\(A = \frac{4x^2 y^2}{(x^2 - y^2)^2}\)[/tex]. Thus,
[tex]\[ \frac{\sin^2 \theta}{\cos^2 \theta} = A \][/tex]
And using the Pythagorean identity:
[tex]\[ \sin^2 \theta = A \cos^2 \theta \][/tex]
We substitute back for [tex]\(\cos^2 \theta\)[/tex]:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta \][/tex]
So:
[tex]\[ \sin^2 \theta = A (1 - \sin^2 \theta) \][/tex]
Therefore:
[tex]\[ \sin^2 \theta = A - A \sin^2 \theta \][/tex]
Solving for [tex]\(\sin^2 \theta\)[/tex]:
[tex]\[ \sin^2 \theta(1 + A) = A \][/tex]
And:
[tex]\[ \sin^2 \theta = \frac{A}{1 + A} \][/tex]
Recalling the value of [tex]\(A\)[/tex]:
[tex]\[ A = \frac{4 x^2 y^2}{(x^2 - y^2)^2} \][/tex]
Substitute [tex]\(A\)[/tex]:
[tex]\[ \sin^2 \theta = \frac{\frac{4 x^2 y^2}{(x^2 - y^2)^2}}{1 + \frac{4 x^2 y^2}{(x^2 - y^2)^2}} \][/tex]
Now simplify the denominator:
[tex]\[ \sin^2 \theta = \frac{4 x^2 y^2}{(x^2 - y^2)^2 + 4 x^2 y^2} \][/tex]
Simplify the terms in the denominator:
[tex]\[ \sin^2 \theta = \frac{4 x^2 y^2}{x^4 - 2 x^2 y^2 + y^4 + 4 x^2 y^2} \][/tex]
This results in:
[tex]\[ \sin^2 \theta = \frac{4 x^2 y^2}{x^4 + 2 x^2 y^2 + y^4} \][/tex]
Notice that [tex]\(x^4 + 2 x^2 y^2 + y^4\)[/tex] can be factored as:
[tex]\[ \sin^2 \theta = \frac{4 x^2 y^2}{(x^2 + y^2)^2} \][/tex]
So:
[tex]\[ \sin^2 \theta = \left(\frac{2 x y}{x^2 + y^2}\right)^2 \][/tex]
Taking the square root of both sides:
[tex]\[ \sin \theta = \frac{2 x y}{x^2 + y^2} \][/tex]
Thus, we have proven:
[tex]\[ \sin \theta = \frac{2xy}{x^2 + y^2} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.