From simple queries to complex problems, IDNLearn.com provides reliable answers. Find the information you need quickly and easily with our comprehensive and accurate Q&A platform.
Sagot :
Certainly! Let's go through this problem step-by-step to understand the homomorphism between groups [tex]\(Z\)[/tex] and [tex]\( \mathbb{Z}_n \)[/tex] more clearly.
### Given Data:
- [tex]\(G = \mathbb{Z}\)[/tex] is the group of integers under addition.
- [tex]\( G' = \mathbb{Z}_n \)[/tex] is the group of integers modulo [tex]\( n \)[/tex].
- The homomorphism [tex]\( \varphi: G \to G' \)[/tex] is defined by [tex]\( \varphi(m) = [m] \)[/tex], where [tex]\([m]\)[/tex] represents the equivalence class of [tex]\( m \)[/tex] modulo [tex]\( n \)[/tex].
### Homomorphism Property:
To show that [tex]\( \varphi \)[/tex] is a homomorphism, we need to verify the property:
[tex]\[ \varphi(m + r) = \varphi(m) + \varphi(r) \][/tex]
where [tex]\( m, r \in G \)[/tex].
### Steps and Calculations:
1. Define the Mapping:
The mapping [tex]\(\varphi\)[/tex] sends an integer [tex]\( m \in \mathbb{Z} \)[/tex] to its equivalence class modulo [tex]\( n \)[/tex]. Hence,
[tex]\[ \varphi(m) = m \mod n \][/tex]
Similarly, for another integer [tex]\( r \)[/tex],
[tex]\[ \varphi(r) = r \mod n \][/tex]
2. Homomorphism Check:
Let's verify the homomorphism property with specific values for [tex]\( m \)[/tex] and [tex]\( r \)[/tex].
Suppose [tex]\( m = 7 \)[/tex] and [tex]\( r = 3 \)[/tex], and let [tex]\( n = 5 \)[/tex].
- Calculate [tex]\( \varphi(m) \)[/tex]:
[tex]\[ \varphi(7) = 7 \mod 5 = 2 \][/tex]
- Calculate [tex]\( \varphi(r) \)[/tex]:
[tex]\[ \varphi(3) = 3 \mod 5 = 3 \][/tex]
- Calculate [tex]\( m + r \)[/tex]:
[tex]\[ 7 + 3 = 10 \][/tex]
- Calculate [tex]\( \varphi(m + r) \)[/tex]:
[tex]\[ \varphi(10) = 10 \mod 5 = 0 \][/tex]
- Calculate [tex]\( \varphi(m) + \varphi(r) \)[/tex] in [tex]\( \mathbb{Z}_n \)[/tex]:
- First, compute directly:
[tex]\[ 2 + 3 = 5 \][/tex]
- Then, reduce the result modulo [tex]\( n \)[/tex]:
[tex]\[ 5 \mod 5 = 0 \][/tex]
3. Verify the Equality:
- Now compare [tex]\(\varphi(m + r)\)[/tex] with [tex]\(\varphi(m) + \varphi(r)\)[/tex]:
[tex]\[ \varphi(10) = 0 \][/tex]
[tex]\[ \varphi(7) + \varphi(3) = 0 \][/tex]
Since both sides equate to 0, the homomorphism property holds true for these values.
4. Conclusion:
For these specific values, we have shown that:
[tex]\[ \varphi(m + r) = \varphi(m) + \varphi(r) \][/tex]
which means [tex]\(\varphi\)[/tex] preserves the group operation.
Thus, [tex]\(\varphi\)[/tex] is indeed a homomorphism of [tex]\(\mathbb{Z}\)[/tex] onto [tex]\(\mathbb{Z}_n\)[/tex].
### Final Answer:
The results of the calculations and the verification demonstrate that [tex]\(\varphi\)[/tex] is a valid homomorphism:
- [tex]\(\mathbb{Z}\)[/tex] maps to [tex]\( \mathbb{Z}_5 \)[/tex] with [tex]\( \varphi(7) = 2 \)[/tex] and [tex]\( \varphi(3) = 3 \)[/tex].
- The addition operation in [tex]\( \mathbb{Z}_5 \)[/tex] shows that [tex]\(\varphi(7 + 3) = 0\)[/tex] and [tex]\(\varphi(7) + \varphi(3) = 0\)[/tex].
Finally, these results confirm that [tex]\(\varphi(m+r) = \varphi(m) + \varphi(r)\)[/tex] for the given examples, verifying the homomorphism property correctly.
### Given Data:
- [tex]\(G = \mathbb{Z}\)[/tex] is the group of integers under addition.
- [tex]\( G' = \mathbb{Z}_n \)[/tex] is the group of integers modulo [tex]\( n \)[/tex].
- The homomorphism [tex]\( \varphi: G \to G' \)[/tex] is defined by [tex]\( \varphi(m) = [m] \)[/tex], where [tex]\([m]\)[/tex] represents the equivalence class of [tex]\( m \)[/tex] modulo [tex]\( n \)[/tex].
### Homomorphism Property:
To show that [tex]\( \varphi \)[/tex] is a homomorphism, we need to verify the property:
[tex]\[ \varphi(m + r) = \varphi(m) + \varphi(r) \][/tex]
where [tex]\( m, r \in G \)[/tex].
### Steps and Calculations:
1. Define the Mapping:
The mapping [tex]\(\varphi\)[/tex] sends an integer [tex]\( m \in \mathbb{Z} \)[/tex] to its equivalence class modulo [tex]\( n \)[/tex]. Hence,
[tex]\[ \varphi(m) = m \mod n \][/tex]
Similarly, for another integer [tex]\( r \)[/tex],
[tex]\[ \varphi(r) = r \mod n \][/tex]
2. Homomorphism Check:
Let's verify the homomorphism property with specific values for [tex]\( m \)[/tex] and [tex]\( r \)[/tex].
Suppose [tex]\( m = 7 \)[/tex] and [tex]\( r = 3 \)[/tex], and let [tex]\( n = 5 \)[/tex].
- Calculate [tex]\( \varphi(m) \)[/tex]:
[tex]\[ \varphi(7) = 7 \mod 5 = 2 \][/tex]
- Calculate [tex]\( \varphi(r) \)[/tex]:
[tex]\[ \varphi(3) = 3 \mod 5 = 3 \][/tex]
- Calculate [tex]\( m + r \)[/tex]:
[tex]\[ 7 + 3 = 10 \][/tex]
- Calculate [tex]\( \varphi(m + r) \)[/tex]:
[tex]\[ \varphi(10) = 10 \mod 5 = 0 \][/tex]
- Calculate [tex]\( \varphi(m) + \varphi(r) \)[/tex] in [tex]\( \mathbb{Z}_n \)[/tex]:
- First, compute directly:
[tex]\[ 2 + 3 = 5 \][/tex]
- Then, reduce the result modulo [tex]\( n \)[/tex]:
[tex]\[ 5 \mod 5 = 0 \][/tex]
3. Verify the Equality:
- Now compare [tex]\(\varphi(m + r)\)[/tex] with [tex]\(\varphi(m) + \varphi(r)\)[/tex]:
[tex]\[ \varphi(10) = 0 \][/tex]
[tex]\[ \varphi(7) + \varphi(3) = 0 \][/tex]
Since both sides equate to 0, the homomorphism property holds true for these values.
4. Conclusion:
For these specific values, we have shown that:
[tex]\[ \varphi(m + r) = \varphi(m) + \varphi(r) \][/tex]
which means [tex]\(\varphi\)[/tex] preserves the group operation.
Thus, [tex]\(\varphi\)[/tex] is indeed a homomorphism of [tex]\(\mathbb{Z}\)[/tex] onto [tex]\(\mathbb{Z}_n\)[/tex].
### Final Answer:
The results of the calculations and the verification demonstrate that [tex]\(\varphi\)[/tex] is a valid homomorphism:
- [tex]\(\mathbb{Z}\)[/tex] maps to [tex]\( \mathbb{Z}_5 \)[/tex] with [tex]\( \varphi(7) = 2 \)[/tex] and [tex]\( \varphi(3) = 3 \)[/tex].
- The addition operation in [tex]\( \mathbb{Z}_5 \)[/tex] shows that [tex]\(\varphi(7 + 3) = 0\)[/tex] and [tex]\(\varphi(7) + \varphi(3) = 0\)[/tex].
Finally, these results confirm that [tex]\(\varphi(m+r) = \varphi(m) + \varphi(r)\)[/tex] for the given examples, verifying the homomorphism property correctly.
We are delighted to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.