From simple queries to complex problems, IDNLearn.com provides reliable answers. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
Sure, let's solve the limit problem:
[tex]\[ \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 - x - 1} \right) \][/tex]
To solve this, we will first simplify the expression inside the limit.
Notice that the terms inside the square roots, [tex]\( x^2 + x + 1 \)[/tex] and [tex]\( x^2 - x - 1 \)[/tex], both have [tex]\( x^2 \)[/tex] which dominates as [tex]\( x \)[/tex] increases to infinity.
1. Factor out [tex]\( x^2 \)[/tex] from both square roots:
[tex]\[ \sqrt{x^2 + x + 1} = \sqrt{x^2\left( 1 + \frac{x}{x^2} + \frac{1}{x^2} \right)} = \sqrt{x^2 \left( 1 + \frac{1}{x} + \frac{1}{x^2} \right)} \][/tex]
[tex]\[ \sqrt{x^2 + x + 1} = x \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} \][/tex]
Similarly,
[tex]\[ \sqrt{x^2 - x - 1} = \sqrt{x^2\left( 1 - \frac{x}{x^2} - \frac{1}{x^2} \right)} = \sqrt{x^2 \left( 1 - \frac{1}{x} - \frac{1}{x^2} \right)} \][/tex]
[tex]\[ \sqrt{x^2 - x - 1} = x \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \][/tex]
2. Rewrite the original limit with these simplified expressions:
[tex]\[ \lim_{x \to \infty} \left( x \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - x \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \right) \][/tex]
3. Factor out [tex]\( x \)[/tex]:
[tex]\[ x \left( \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \right) \][/tex]
4. Now consider the behavior of the terms inside the square roots as [tex]\( x \)[/tex] goes to infinity. As [tex]\( x \)[/tex] approaches infinity, [tex]\( \frac{1}{x} \)[/tex] approaches 0 and [tex]\( \frac{1}{x^2} \)[/tex] also approaches 0. Therefore, the terms inside the square roots approach 1.
Let's use the binomial expansion for square roots for large [tex]\( x \)[/tex]:
[tex]\[ \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} \approx 1 + \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \][/tex]
[tex]\[ \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \approx 1 - \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \][/tex]
5. Subtract these two expressions:
[tex]\[ \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \approx \left( 1 + \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \right) - \left( 1 - \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \right) \][/tex]
[tex]\[ \approx \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) + \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \][/tex]
[tex]\[ \approx \frac{1}{x} + \frac{1}{x^2} \][/tex]
6. Multiply by [tex]\( x \)[/tex]:
[tex]\[ x \left( \frac{1}{x} + \frac{1}{x^2} \right) = 1 + \frac{1}{x} \][/tex]
As [tex]\( x \)[/tex] goes to infinity, [tex]\( \frac{1}{x} \)[/tex] approaches 0. Therefore, the expression approaches 1.
So, the answer is:
[tex]\[ \boxed{1} \][/tex]
[tex]\[ \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 - x - 1} \right) \][/tex]
To solve this, we will first simplify the expression inside the limit.
Notice that the terms inside the square roots, [tex]\( x^2 + x + 1 \)[/tex] and [tex]\( x^2 - x - 1 \)[/tex], both have [tex]\( x^2 \)[/tex] which dominates as [tex]\( x \)[/tex] increases to infinity.
1. Factor out [tex]\( x^2 \)[/tex] from both square roots:
[tex]\[ \sqrt{x^2 + x + 1} = \sqrt{x^2\left( 1 + \frac{x}{x^2} + \frac{1}{x^2} \right)} = \sqrt{x^2 \left( 1 + \frac{1}{x} + \frac{1}{x^2} \right)} \][/tex]
[tex]\[ \sqrt{x^2 + x + 1} = x \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} \][/tex]
Similarly,
[tex]\[ \sqrt{x^2 - x - 1} = \sqrt{x^2\left( 1 - \frac{x}{x^2} - \frac{1}{x^2} \right)} = \sqrt{x^2 \left( 1 - \frac{1}{x} - \frac{1}{x^2} \right)} \][/tex]
[tex]\[ \sqrt{x^2 - x - 1} = x \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \][/tex]
2. Rewrite the original limit with these simplified expressions:
[tex]\[ \lim_{x \to \infty} \left( x \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - x \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \right) \][/tex]
3. Factor out [tex]\( x \)[/tex]:
[tex]\[ x \left( \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \right) \][/tex]
4. Now consider the behavior of the terms inside the square roots as [tex]\( x \)[/tex] goes to infinity. As [tex]\( x \)[/tex] approaches infinity, [tex]\( \frac{1}{x} \)[/tex] approaches 0 and [tex]\( \frac{1}{x^2} \)[/tex] also approaches 0. Therefore, the terms inside the square roots approach 1.
Let's use the binomial expansion for square roots for large [tex]\( x \)[/tex]:
[tex]\[ \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} \approx 1 + \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \][/tex]
[tex]\[ \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \approx 1 - \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \][/tex]
5. Subtract these two expressions:
[tex]\[ \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - \sqrt{1 - \frac{1}{x} - \frac{1}{x^2}} \approx \left( 1 + \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \right) - \left( 1 - \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \right) \][/tex]
[tex]\[ \approx \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) + \frac{1}{2} \left( \frac{1}{x} + \frac{1}{x^2} \right) \][/tex]
[tex]\[ \approx \frac{1}{x} + \frac{1}{x^2} \][/tex]
6. Multiply by [tex]\( x \)[/tex]:
[tex]\[ x \left( \frac{1}{x} + \frac{1}{x^2} \right) = 1 + \frac{1}{x} \][/tex]
As [tex]\( x \)[/tex] goes to infinity, [tex]\( \frac{1}{x} \)[/tex] approaches 0. Therefore, the expression approaches 1.
So, the answer is:
[tex]\[ \boxed{1} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.