Join the growing community of curious minds on IDNLearn.com. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.
Sagot :
Sure, let's work through the given set identities step by step.
### First Property: [tex]\( A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)[/tex]
To prove this, we need to show that an element [tex]\( x \)[/tex] belongs to the set on the left-hand side if and only if it belongs to the set on the right-hand side.
Proof:
1. Suppose [tex]\( x \in A \cap (B \cup C) \)[/tex].
- By the definition of intersection, [tex]\( x \in A \)[/tex] and [tex]\( x \in B \cup C \)[/tex].
- By the definition of union, [tex]\( x \in B \cup C \)[/tex] means that [tex]\( x \in B \)[/tex] or [tex]\( x \in C \)[/tex].
Therefore, we have two cases:
- If [tex]\( x \in B \)[/tex], then [tex]\( x \in A \cap B \)[/tex].
- If [tex]\( x \in C \)[/tex], then [tex]\( x \in A \cap C \)[/tex].
Thus, [tex]\( x \in (A \cap B) \cup (A \cap C) \)[/tex].
2. Conversely, suppose [tex]\( x \in (A \cap B) \cup (A \cap C) \)[/tex].
- By the definition of union, [tex]\( x \in (A \cap B) \cup (A \cap C) \)[/tex] means that [tex]\( x \in A \cap B \)[/tex] or [tex]\( x \in A \cap C \)[/tex].
Therefore, we have two cases:
- If [tex]\( x \in A \cap B \)[/tex], then [tex]\( x \in A \)[/tex] and [tex]\( x \in B \)[/tex].
- If [tex]\( x \in A \cap C \)[/tex], then [tex]\( x \in A \)[/tex] and [tex]\( x \in C \)[/tex].
- In either case, we have [tex]\( x \in A \)[/tex] and [tex]\( x \in B \cup C \)[/tex].
Thus, [tex]\( x \in A \cap (B \cup C) \)[/tex].
Since both directions have been shown, we conclude that [tex]\( A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)[/tex].
### Second Property: [tex]\( A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)[/tex]
To prove this, we need to show that an element [tex]\( x \)[/tex] belongs to the set on the left-hand side if and only if it belongs to the set on the right-hand side.
Proof:
1. Suppose [tex]\( x \in A \cup (B \cap C) \)[/tex].
- By the definition of union, [tex]\( x \in A \cup (B \cap C) \)[/tex] means that [tex]\( x \in A \)[/tex] or [tex]\( x \in B \cap C \)[/tex].
- If [tex]\( x \in B \cap C \)[/tex], then [tex]\( x \in B \)[/tex] and [tex]\( x \in C \)[/tex].
Therefore, we have two cases:
- If [tex]\( x \in A \)[/tex], then [tex]\( x \in A \cup B \)[/tex] and [tex]\( x \in A \cup C \)[/tex].
- If [tex]\( x \in B \cap C \)[/tex], then [tex]\( x \in B \)[/tex] and [tex]\( x \in C \)[/tex], implying that [tex]\( x \in A \cup B \)[/tex] and [tex]\( x \in A \cup C \)[/tex].
Thus, [tex]\( x \in (A \cup B) \cap (A \cup C) \)[/tex].
2. Conversely, suppose [tex]\( x \in (A \cup B) \cap (A \cup C) \)[/tex].
- By the definition of intersection, [tex]\( x \in (A \cup B) \cap (A \cup C) \)[/tex] means that [tex]\( x \in A \cup B \)[/tex] and [tex]\( x \in A \cup C \)[/tex].
Therefore, we have two cases:
- If [tex]\( x \in A \)[/tex], then [tex]\( x \in A \)[/tex] which satisfies the left-hand side.
- If [tex]\( x \notin A \)[/tex], then [tex]\( x \in B \)[/tex] (as [tex]\( x \in A \cup B \)[/tex] and [tex]\( x \notin A \)[/tex]) and [tex]\( x \in C \)[/tex] (as [tex]\( x \in A \cup C \)[/tex] and [tex]\( x \notin A \)[/tex]), which implies [tex]\( x \in B \cap C \)[/tex].
In either case, we have [tex]\( x \in A \cup (B \cap C) \)[/tex].
Since both directions have been shown, we conclude [tex]\( A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)[/tex].
By showing both properties step by step with logical deductions, we have proven the set identities.
### First Property: [tex]\( A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)[/tex]
To prove this, we need to show that an element [tex]\( x \)[/tex] belongs to the set on the left-hand side if and only if it belongs to the set on the right-hand side.
Proof:
1. Suppose [tex]\( x \in A \cap (B \cup C) \)[/tex].
- By the definition of intersection, [tex]\( x \in A \)[/tex] and [tex]\( x \in B \cup C \)[/tex].
- By the definition of union, [tex]\( x \in B \cup C \)[/tex] means that [tex]\( x \in B \)[/tex] or [tex]\( x \in C \)[/tex].
Therefore, we have two cases:
- If [tex]\( x \in B \)[/tex], then [tex]\( x \in A \cap B \)[/tex].
- If [tex]\( x \in C \)[/tex], then [tex]\( x \in A \cap C \)[/tex].
Thus, [tex]\( x \in (A \cap B) \cup (A \cap C) \)[/tex].
2. Conversely, suppose [tex]\( x \in (A \cap B) \cup (A \cap C) \)[/tex].
- By the definition of union, [tex]\( x \in (A \cap B) \cup (A \cap C) \)[/tex] means that [tex]\( x \in A \cap B \)[/tex] or [tex]\( x \in A \cap C \)[/tex].
Therefore, we have two cases:
- If [tex]\( x \in A \cap B \)[/tex], then [tex]\( x \in A \)[/tex] and [tex]\( x \in B \)[/tex].
- If [tex]\( x \in A \cap C \)[/tex], then [tex]\( x \in A \)[/tex] and [tex]\( x \in C \)[/tex].
- In either case, we have [tex]\( x \in A \)[/tex] and [tex]\( x \in B \cup C \)[/tex].
Thus, [tex]\( x \in A \cap (B \cup C) \)[/tex].
Since both directions have been shown, we conclude that [tex]\( A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)[/tex].
### Second Property: [tex]\( A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)[/tex]
To prove this, we need to show that an element [tex]\( x \)[/tex] belongs to the set on the left-hand side if and only if it belongs to the set on the right-hand side.
Proof:
1. Suppose [tex]\( x \in A \cup (B \cap C) \)[/tex].
- By the definition of union, [tex]\( x \in A \cup (B \cap C) \)[/tex] means that [tex]\( x \in A \)[/tex] or [tex]\( x \in B \cap C \)[/tex].
- If [tex]\( x \in B \cap C \)[/tex], then [tex]\( x \in B \)[/tex] and [tex]\( x \in C \)[/tex].
Therefore, we have two cases:
- If [tex]\( x \in A \)[/tex], then [tex]\( x \in A \cup B \)[/tex] and [tex]\( x \in A \cup C \)[/tex].
- If [tex]\( x \in B \cap C \)[/tex], then [tex]\( x \in B \)[/tex] and [tex]\( x \in C \)[/tex], implying that [tex]\( x \in A \cup B \)[/tex] and [tex]\( x \in A \cup C \)[/tex].
Thus, [tex]\( x \in (A \cup B) \cap (A \cup C) \)[/tex].
2. Conversely, suppose [tex]\( x \in (A \cup B) \cap (A \cup C) \)[/tex].
- By the definition of intersection, [tex]\( x \in (A \cup B) \cap (A \cup C) \)[/tex] means that [tex]\( x \in A \cup B \)[/tex] and [tex]\( x \in A \cup C \)[/tex].
Therefore, we have two cases:
- If [tex]\( x \in A \)[/tex], then [tex]\( x \in A \)[/tex] which satisfies the left-hand side.
- If [tex]\( x \notin A \)[/tex], then [tex]\( x \in B \)[/tex] (as [tex]\( x \in A \cup B \)[/tex] and [tex]\( x \notin A \)[/tex]) and [tex]\( x \in C \)[/tex] (as [tex]\( x \in A \cup C \)[/tex] and [tex]\( x \notin A \)[/tex]), which implies [tex]\( x \in B \cap C \)[/tex].
In either case, we have [tex]\( x \in A \cup (B \cap C) \)[/tex].
Since both directions have been shown, we conclude [tex]\( A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)[/tex].
By showing both properties step by step with logical deductions, we have proven the set identities.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.