Explore a wide range of topics and get answers from experts on IDNLearn.com. Ask any question and receive timely, accurate responses from our dedicated community of experts.
Sagot :
Let's solve the problem step-by-step:
### Given:
- Initial velocity ([tex]\(u\)[/tex]) = 10.0 m/s (upward)
- Height of the building ([tex]\(h_\text{building}\)[/tex]) = 50.0 m
- Acceleration due to gravity ([tex]\(g\)[/tex]) = 9.81 m/s²
### (a) Velocity with which the ball will strike the ground:
To find the final velocity ([tex]\(v\)[/tex]) when the ball hits the ground, we can use the kinematic equation:
[tex]\[ v^2 = u^2 + 2as \][/tex]
Where:
- [tex]\(u\)[/tex] is the initial velocity
- [tex]\(a\)[/tex] is the acceleration (gravity, [tex]\(g\)[/tex])
- [tex]\(s\)[/tex] is the displacement (total vertical distance traveled by the ball)
First, let's find the total vertical distance:
#### Step 1: Time to reach the maximum height:
The time it takes to reach the maximum height ([tex]\(t_\text{up}\)[/tex]) can be calculated using:
[tex]\[ t_\text{up} = \frac{u}{g} \][/tex]
#### Step 2: Maximum height above the building:
The maximum height ([tex]\(h_\text{max}\)[/tex]) above the building is given by:
[tex]\[ h_\text{max} = u \cdot t_\text{up} - \frac{1}{2} g \cdot t_\text{up}^2 \][/tex]
#### Step 3: Total height from the ground:
The total height ([tex]\(h_\text{total}\)[/tex]) from the ground is:
[tex]\[ h_\text{total} = h_\text{building} + h_\text{max} \][/tex]
#### Step 4: Final velocity using the kinematic equation:
Now, we can calculate the final velocity when the ball hits the ground using:
[tex]\[ v = \sqrt{u^2 + 2gh_\text{total}} \][/tex]
Given our conditions, the final velocity when the ball strikes the ground is:
[tex]\[ v \approx 32.88 \text{ m/s} \][/tex]
### (b) Time to strike the ground:
To find the total time ([tex]\(t_\text{total}\)[/tex]) it takes for the ball to strike the ground, we consider two intervals:
1. Time to reach the maximum height ([tex]\(t_\text{up}\)[/tex]).
2. Time to fall from the maximum height to the ground.
#### Step 1: Calculate [tex]\( t_\text{up} \)[/tex]:
[tex]\[ t_\text{up} = \frac{u}{g} \][/tex]
#### Step 2: Time to fall from maximum height ([tex]\(t_\text{down}\)[/tex]):
We can use the kinematic equation to find [tex]\( t_\text{down} \)[/tex]:
[tex]\[ t_\text{down} = \sqrt{\frac{2h_\text{total}}{g}} \][/tex]
#### Step 3: Total time ([tex]\( t_\text{total} \)[/tex]):
[tex]\[ t_\text{total} = t_\text{up} + t_\text{down} \][/tex]
Given our conditions, the total time for the ball to hit the ground is:
[tex]\[ t_\text{total} \approx 4.37 \text{ seconds} \][/tex]
### Summary:
(a) The velocity with which the ball will strike the ground is approximately:
[tex]\[ 32.88 \text{ m/s} \][/tex]
(b) The total time it takes for the ball to strike the ground is approximately:
[tex]\[ 4.37 \text{ seconds} \][/tex]
### Given:
- Initial velocity ([tex]\(u\)[/tex]) = 10.0 m/s (upward)
- Height of the building ([tex]\(h_\text{building}\)[/tex]) = 50.0 m
- Acceleration due to gravity ([tex]\(g\)[/tex]) = 9.81 m/s²
### (a) Velocity with which the ball will strike the ground:
To find the final velocity ([tex]\(v\)[/tex]) when the ball hits the ground, we can use the kinematic equation:
[tex]\[ v^2 = u^2 + 2as \][/tex]
Where:
- [tex]\(u\)[/tex] is the initial velocity
- [tex]\(a\)[/tex] is the acceleration (gravity, [tex]\(g\)[/tex])
- [tex]\(s\)[/tex] is the displacement (total vertical distance traveled by the ball)
First, let's find the total vertical distance:
#### Step 1: Time to reach the maximum height:
The time it takes to reach the maximum height ([tex]\(t_\text{up}\)[/tex]) can be calculated using:
[tex]\[ t_\text{up} = \frac{u}{g} \][/tex]
#### Step 2: Maximum height above the building:
The maximum height ([tex]\(h_\text{max}\)[/tex]) above the building is given by:
[tex]\[ h_\text{max} = u \cdot t_\text{up} - \frac{1}{2} g \cdot t_\text{up}^2 \][/tex]
#### Step 3: Total height from the ground:
The total height ([tex]\(h_\text{total}\)[/tex]) from the ground is:
[tex]\[ h_\text{total} = h_\text{building} + h_\text{max} \][/tex]
#### Step 4: Final velocity using the kinematic equation:
Now, we can calculate the final velocity when the ball hits the ground using:
[tex]\[ v = \sqrt{u^2 + 2gh_\text{total}} \][/tex]
Given our conditions, the final velocity when the ball strikes the ground is:
[tex]\[ v \approx 32.88 \text{ m/s} \][/tex]
### (b) Time to strike the ground:
To find the total time ([tex]\(t_\text{total}\)[/tex]) it takes for the ball to strike the ground, we consider two intervals:
1. Time to reach the maximum height ([tex]\(t_\text{up}\)[/tex]).
2. Time to fall from the maximum height to the ground.
#### Step 1: Calculate [tex]\( t_\text{up} \)[/tex]:
[tex]\[ t_\text{up} = \frac{u}{g} \][/tex]
#### Step 2: Time to fall from maximum height ([tex]\(t_\text{down}\)[/tex]):
We can use the kinematic equation to find [tex]\( t_\text{down} \)[/tex]:
[tex]\[ t_\text{down} = \sqrt{\frac{2h_\text{total}}{g}} \][/tex]
#### Step 3: Total time ([tex]\( t_\text{total} \)[/tex]):
[tex]\[ t_\text{total} = t_\text{up} + t_\text{down} \][/tex]
Given our conditions, the total time for the ball to hit the ground is:
[tex]\[ t_\text{total} \approx 4.37 \text{ seconds} \][/tex]
### Summary:
(a) The velocity with which the ball will strike the ground is approximately:
[tex]\[ 32.88 \text{ m/s} \][/tex]
(b) The total time it takes for the ball to strike the ground is approximately:
[tex]\[ 4.37 \text{ seconds} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.