IDNLearn.com: Your one-stop platform for getting reliable answers to any question. Get prompt and accurate answers to your questions from our experts who are always ready to help.
Sagot :
Sure, let's tackle this problem step by step.
### Part (a)
We are given the initial mass of the radioactive substance and its half-life. To find the formula relating the remaining mass [tex]\( y \)[/tex] to time [tex]\( t \)[/tex] under the continuous exponential decay model, we start by defining the relationship through the exponential decay formula:
[tex]\[ y = y_0 e^{kt} \][/tex]
Here:
- [tex]\( y_0 \)[/tex] is the initial mass of the substance.
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time in hours.
We need to determine the decay constant [tex]\( k \)[/tex]. Using the fact that the half-life of the substance is 23 hours, we know that:
[tex]\[ y \bigg|_{t=23} = \frac{y_0}{2} \][/tex]
Using the exponential decay formula when [tex]\( t = 23 \)[/tex]:
[tex]\[ \frac{y_0}{2} = y_0 e^{k \cdot 23} \][/tex]
We can cancel [tex]\( y_0 \)[/tex] on both sides of the equation:
[tex]\[ \frac{1}{2} = e^{k \cdot 23} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{1}{2}\right) = k \cdot 23 \][/tex]
Simplifying for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{\ln\left(\frac{1}{2}\right)}{23} \][/tex]
[tex]\[ k = \frac{\ln(0.5)}{23} \][/tex]
The formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is then:
[tex]\[ y = 769.3 e^{\left(\frac{\ln(0.5)}{23}\right) t} \][/tex]
So in the given formula [tex]\( y = \square e^{Dt} \)[/tex], [tex]\( \square \)[/tex] should be replaced by the initial mass 769.3, and [tex]\( D \)[/tex] should be replaced by [tex]\( \frac{\ln(0.5)}{23} \)[/tex].
Thus, the exact formula is:
[tex]\[ y = 769.3 e^{\left(\frac{\ln(0.5)}{23} \right) t} \][/tex]
### Part (b)
To find out how much substance will be present after 21 hours, we substitute [tex]\( t = 21 \)[/tex] into our formula:
[tex]\[ y = 769.3 e^{\left( \frac{\ln(0.5)}{23} \right) 21} \][/tex]
Evaluating the exponent:
[tex]\[ \frac{\ln(0.5)}{23} \approx -0.0301368 \][/tex]
So:
[tex]\[ y = 769.3 e^{-0.0301368 \cdot 21} \][/tex]
[tex]\[ y \approx 769.3 e^{-0.632873} \][/tex]
[tex]\[ y \approx 769.3 \times 0.5312 \][/tex]
[tex]\[ y \approx 408.5 \][/tex]
Therefore, the amount of the substance present after 21 hours will be approximately 408.5 mg, rounded to the nearest tenth.
### Part (a)
We are given the initial mass of the radioactive substance and its half-life. To find the formula relating the remaining mass [tex]\( y \)[/tex] to time [tex]\( t \)[/tex] under the continuous exponential decay model, we start by defining the relationship through the exponential decay formula:
[tex]\[ y = y_0 e^{kt} \][/tex]
Here:
- [tex]\( y_0 \)[/tex] is the initial mass of the substance.
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time in hours.
We need to determine the decay constant [tex]\( k \)[/tex]. Using the fact that the half-life of the substance is 23 hours, we know that:
[tex]\[ y \bigg|_{t=23} = \frac{y_0}{2} \][/tex]
Using the exponential decay formula when [tex]\( t = 23 \)[/tex]:
[tex]\[ \frac{y_0}{2} = y_0 e^{k \cdot 23} \][/tex]
We can cancel [tex]\( y_0 \)[/tex] on both sides of the equation:
[tex]\[ \frac{1}{2} = e^{k \cdot 23} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{1}{2}\right) = k \cdot 23 \][/tex]
Simplifying for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{\ln\left(\frac{1}{2}\right)}{23} \][/tex]
[tex]\[ k = \frac{\ln(0.5)}{23} \][/tex]
The formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is then:
[tex]\[ y = 769.3 e^{\left(\frac{\ln(0.5)}{23}\right) t} \][/tex]
So in the given formula [tex]\( y = \square e^{Dt} \)[/tex], [tex]\( \square \)[/tex] should be replaced by the initial mass 769.3, and [tex]\( D \)[/tex] should be replaced by [tex]\( \frac{\ln(0.5)}{23} \)[/tex].
Thus, the exact formula is:
[tex]\[ y = 769.3 e^{\left(\frac{\ln(0.5)}{23} \right) t} \][/tex]
### Part (b)
To find out how much substance will be present after 21 hours, we substitute [tex]\( t = 21 \)[/tex] into our formula:
[tex]\[ y = 769.3 e^{\left( \frac{\ln(0.5)}{23} \right) 21} \][/tex]
Evaluating the exponent:
[tex]\[ \frac{\ln(0.5)}{23} \approx -0.0301368 \][/tex]
So:
[tex]\[ y = 769.3 e^{-0.0301368 \cdot 21} \][/tex]
[tex]\[ y \approx 769.3 e^{-0.632873} \][/tex]
[tex]\[ y \approx 769.3 \times 0.5312 \][/tex]
[tex]\[ y \approx 408.5 \][/tex]
Therefore, the amount of the substance present after 21 hours will be approximately 408.5 mg, rounded to the nearest tenth.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.