IDNLearn.com: Where your questions are met with thoughtful and precise answers. Ask anything and receive well-informed answers from our community of experienced professionals.
Sagot :
Given the problem, let's break it down step by step:
### Part (a)
We are given that the number of bacteria in a culture decreases according to a continuous exponential decay model. The initial population is 320 bacteria, and there are 240 bacteria left after 17 minutes.
1. Exponential Decay Model: The general model for exponential decay can be written as:
[tex]\[ y = y_0 e^{kt} \][/tex]
where [tex]\( y_0 \)[/tex] is the initial population, [tex]\( k \)[/tex] is the decay constant, and [tex]\( t \)[/tex] is time.
2. Initial Population: Here, [tex]\( y_0 = 320 \)[/tex].
3. Given Data Point:
After 17 minutes, the population is 240:
[tex]\[ 240 = 320 e^{k \cdot 17} \][/tex]
4. Solve for [tex]\( k \)[/tex]:
Rearrange the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ \frac{240}{320} = e^{17k} \][/tex]
[tex]\[ 0.75 = e^{17k} \][/tex]
Taking the natural logarithm on both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln(0.75) = 17k \][/tex]
[tex]\[ k = \frac{\ln(0.75)}{17} \][/tex]
5. Plug [tex]\( k \)[/tex] back into the model:
Substituting [tex]\( k \)[/tex] into the exponential decay formula:
[tex]\[ y = 320 e^{\left( \frac{\ln(0.75)}{17} t \right)} \][/tex]
Simplifying further, using an exact representation of the expression:
[tex]\[ y = 320 \left( e^{\ln(0.75)} \right)^{\frac{t}{17}} \][/tex]
Since [tex]\( e^{\ln(a)} = a \)[/tex], we get:
[tex]\[ y = 320 \left(0.75^{\frac{t}{17}}\right) \][/tex]
Therefore, the formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:
[tex]\[ y = 320 \cdot 0.75^{\frac{t}{17}} \][/tex]
### Part (b)
To find the number of bacteria 21 minutes after the beginning of the study, substitute [tex]\( t = 21 \)[/tex] into the decay model.
1. Evaluation:
[tex]\[ y = 320 \cdot 0.75^{\frac{21}{17}} \][/tex]
Using the given expression:
[tex]\[ y = 320 \left( 0.75^{\frac{21}{17}} \right) \][/tex]
2. Compute [tex]\( y \)[/tex] at [tex]\( t = 21 \)[/tex]:
[tex]\[ y = 320 e^{\left( \frac{\ln(0.75)}{17} \cdot 21 \right)} \][/tex]
The rounded number of bacteria at [tex]\( t = 21 \)[/tex] minutes is:
[tex]\[ y \approx 224 \][/tex]
### Summary
- Formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex]:
[tex]\[ y = 320 \cdot 0.75^{\frac{t}{17}} \][/tex]
- Number of bacteria at 21 minutes:
[tex]\[ 224 \text{ bacteria} \][/tex]
### Part (a)
We are given that the number of bacteria in a culture decreases according to a continuous exponential decay model. The initial population is 320 bacteria, and there are 240 bacteria left after 17 minutes.
1. Exponential Decay Model: The general model for exponential decay can be written as:
[tex]\[ y = y_0 e^{kt} \][/tex]
where [tex]\( y_0 \)[/tex] is the initial population, [tex]\( k \)[/tex] is the decay constant, and [tex]\( t \)[/tex] is time.
2. Initial Population: Here, [tex]\( y_0 = 320 \)[/tex].
3. Given Data Point:
After 17 minutes, the population is 240:
[tex]\[ 240 = 320 e^{k \cdot 17} \][/tex]
4. Solve for [tex]\( k \)[/tex]:
Rearrange the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ \frac{240}{320} = e^{17k} \][/tex]
[tex]\[ 0.75 = e^{17k} \][/tex]
Taking the natural logarithm on both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln(0.75) = 17k \][/tex]
[tex]\[ k = \frac{\ln(0.75)}{17} \][/tex]
5. Plug [tex]\( k \)[/tex] back into the model:
Substituting [tex]\( k \)[/tex] into the exponential decay formula:
[tex]\[ y = 320 e^{\left( \frac{\ln(0.75)}{17} t \right)} \][/tex]
Simplifying further, using an exact representation of the expression:
[tex]\[ y = 320 \left( e^{\ln(0.75)} \right)^{\frac{t}{17}} \][/tex]
Since [tex]\( e^{\ln(a)} = a \)[/tex], we get:
[tex]\[ y = 320 \left(0.75^{\frac{t}{17}}\right) \][/tex]
Therefore, the formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:
[tex]\[ y = 320 \cdot 0.75^{\frac{t}{17}} \][/tex]
### Part (b)
To find the number of bacteria 21 minutes after the beginning of the study, substitute [tex]\( t = 21 \)[/tex] into the decay model.
1. Evaluation:
[tex]\[ y = 320 \cdot 0.75^{\frac{21}{17}} \][/tex]
Using the given expression:
[tex]\[ y = 320 \left( 0.75^{\frac{21}{17}} \right) \][/tex]
2. Compute [tex]\( y \)[/tex] at [tex]\( t = 21 \)[/tex]:
[tex]\[ y = 320 e^{\left( \frac{\ln(0.75)}{17} \cdot 21 \right)} \][/tex]
The rounded number of bacteria at [tex]\( t = 21 \)[/tex] minutes is:
[tex]\[ y \approx 224 \][/tex]
### Summary
- Formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex]:
[tex]\[ y = 320 \cdot 0.75^{\frac{t}{17}} \][/tex]
- Number of bacteria at 21 minutes:
[tex]\[ 224 \text{ bacteria} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.