IDNLearn.com is designed to help you find accurate answers with ease. Find the information you need quickly and easily with our comprehensive and accurate Q&A platform.
Sagot :
Sure, let's solve this linear programming problem step-by-step:
### Problem Statement
We are given the following linear programming problem:
- Objective: Minimize the cost [tex]\(Z = 0.20x + 0.30y\)[/tex]
- Subject to constraints:
[tex]\[ \begin{align*} 3x + 5y & \geq 45 \\ 2x + y & \geq 20 \\ x, y & \geq 0 \end{align*} \][/tex]
### Step-by-Step Solution
1. Graph the Constraints:
We need to convert the inequalities into equations for graphing purposes.
- [tex]\(3x + 5y = 45\)[/tex]
- [tex]\(2x + y = 20\)[/tex]
2. Plot the Constraints:
- For [tex]\(3x + 5y = 45\)[/tex]:
[tex]\[ \begin{cases} x = 0 \implies y = 9 \quad \text{(0, 9)} \\ y = 0 \implies x = 15 \quad \text{(15, 0)} \end{cases} \][/tex]
Thus, the line intersects the y-axis at (0, 9) and the x-axis at (15, 0).
- For [tex]\(2x + y = 20\)[/tex]:
[tex]\[ \begin{cases} x = 0 \implies y = 20 \quad \text{(0, 20)} \\ y = 0 \implies x = 10 \quad \text{(10, 0)} \end{cases} \][/tex]
Thus, the line intersects the y-axis at (0, 20) and the x-axis at (10, 0).
3. Determine the Feasible Region:
The feasible region is the area where both constraints overlap, and [tex]\(x, y \geq 0\)[/tex].
4. Find the Intersection Points:
- Solve [tex]\(3x + 5y = 45\)[/tex] and [tex]\(2x + y = 20\)[/tex]:
Multiply [tex]\(2x + y = 20\)[/tex] by 5:
[tex]\[ 10x + 5y = 100 \][/tex]
Subtract [tex]\(3x + 5y = 45\)[/tex] from [tex]\(10x + 5y = 100\)[/tex]:
[tex]\[ 7x = 55 \implies x = \frac{55}{7} \implies x \approx 7.857 \][/tex]
Substitute [tex]\(x\)[/tex] into [tex]\(2x + y = 20\)[/tex]:
[tex]\[ 2 \left(\frac{55}{7}\right) + y = 20 \implies y = 20 - \frac{110}{7} \implies y = \frac{140}{7} - \frac{110}{7} \implies y = \frac{30}{7} \implies y \approx 4.286 \][/tex]
So the intersection point (vertex of feasible region) is approximately [tex]\((7.857, 4.286)\)[/tex].
5. Evaluate the Objective Function:
We substitute the critical points (the vertices of the feasible region) into the objective function [tex]\(Z = 0.20x + 0.30y\)[/tex].
At point [tex]\((7.857, 4.286)\)[/tex]:
[tex]\[ Z = 0.20 \times 7.857 + 0.30 \times 4.286 \approx 1.571 + 1.286 = 2.857 \][/tex]
6. Conclusion:
The minimum cost occurs at [tex]\(x \approx 7.857\)[/tex] and [tex]\(y \approx 4.286\)[/tex], and the minimum cost is approximately [tex]\(Rs. 2.857\)[/tex].
Therefore, the minimum cost [tex]\(Z_{\min}\)[/tex] is approximately [tex]\(Rs. 2.857\)[/tex].
### Problem Statement
We are given the following linear programming problem:
- Objective: Minimize the cost [tex]\(Z = 0.20x + 0.30y\)[/tex]
- Subject to constraints:
[tex]\[ \begin{align*} 3x + 5y & \geq 45 \\ 2x + y & \geq 20 \\ x, y & \geq 0 \end{align*} \][/tex]
### Step-by-Step Solution
1. Graph the Constraints:
We need to convert the inequalities into equations for graphing purposes.
- [tex]\(3x + 5y = 45\)[/tex]
- [tex]\(2x + y = 20\)[/tex]
2. Plot the Constraints:
- For [tex]\(3x + 5y = 45\)[/tex]:
[tex]\[ \begin{cases} x = 0 \implies y = 9 \quad \text{(0, 9)} \\ y = 0 \implies x = 15 \quad \text{(15, 0)} \end{cases} \][/tex]
Thus, the line intersects the y-axis at (0, 9) and the x-axis at (15, 0).
- For [tex]\(2x + y = 20\)[/tex]:
[tex]\[ \begin{cases} x = 0 \implies y = 20 \quad \text{(0, 20)} \\ y = 0 \implies x = 10 \quad \text{(10, 0)} \end{cases} \][/tex]
Thus, the line intersects the y-axis at (0, 20) and the x-axis at (10, 0).
3. Determine the Feasible Region:
The feasible region is the area where both constraints overlap, and [tex]\(x, y \geq 0\)[/tex].
4. Find the Intersection Points:
- Solve [tex]\(3x + 5y = 45\)[/tex] and [tex]\(2x + y = 20\)[/tex]:
Multiply [tex]\(2x + y = 20\)[/tex] by 5:
[tex]\[ 10x + 5y = 100 \][/tex]
Subtract [tex]\(3x + 5y = 45\)[/tex] from [tex]\(10x + 5y = 100\)[/tex]:
[tex]\[ 7x = 55 \implies x = \frac{55}{7} \implies x \approx 7.857 \][/tex]
Substitute [tex]\(x\)[/tex] into [tex]\(2x + y = 20\)[/tex]:
[tex]\[ 2 \left(\frac{55}{7}\right) + y = 20 \implies y = 20 - \frac{110}{7} \implies y = \frac{140}{7} - \frac{110}{7} \implies y = \frac{30}{7} \implies y \approx 4.286 \][/tex]
So the intersection point (vertex of feasible region) is approximately [tex]\((7.857, 4.286)\)[/tex].
5. Evaluate the Objective Function:
We substitute the critical points (the vertices of the feasible region) into the objective function [tex]\(Z = 0.20x + 0.30y\)[/tex].
At point [tex]\((7.857, 4.286)\)[/tex]:
[tex]\[ Z = 0.20 \times 7.857 + 0.30 \times 4.286 \approx 1.571 + 1.286 = 2.857 \][/tex]
6. Conclusion:
The minimum cost occurs at [tex]\(x \approx 7.857\)[/tex] and [tex]\(y \approx 4.286\)[/tex], and the minimum cost is approximately [tex]\(Rs. 2.857\)[/tex].
Therefore, the minimum cost [tex]\(Z_{\min}\)[/tex] is approximately [tex]\(Rs. 2.857\)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.