Find solutions to your problems with the help of IDNLearn.com's knowledgeable users. Ask anything and receive thorough, reliable answers from our community of experienced professionals.

The diagram below shows the graphs of [tex]\( f(x) = -(x-3)^2 + 25 \)[/tex] and [tex]\( g(x) = 2\left(\frac{1}{2}\right)^{x+1} - 4 \)[/tex].

Graph [tex]\( f \)[/tex] cuts the [tex]\( x \)[/tex]-axis at [tex]\( A \)[/tex] and [tex]\( C \)[/tex], the [tex]\( y \)[/tex]-axis at [tex]\( E \)[/tex], and has a turning point [tex]\( D \)[/tex].

Graph [tex]\( g \)[/tex] cuts the [tex]\( x \)[/tex]-axis at [tex]\( A \)[/tex] and the [tex]\( y \)[/tex]-axis at [tex]\( B \)[/tex].

\begin{tabular}{|c|c|c|}
\hline
2.1.1 & Write down the equation of the asymptote of [tex]\( g \)[/tex]. & (1) \\
\hline
2.1.2 & Write down the coordinates of [tex]\( D \)[/tex]. & (2) \\
\hline
2.1.3 & Write down the range of [tex]\( f \)[/tex]. & (1) \\
\hline
2.1.4 &
\begin{tabular}{l}
Calculate the length of [tex]\( EB \)[/tex].
\end{tabular}
& (4) \\
\hline
2.1.5 & Determine the values of [tex]\( x \)[/tex] for which [tex]\( f \)[/tex] is decreasing. & (2) \\
\hline
2.1.6 & Calculate the average gradient between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]. & (4) \\
\hline
2.1.7 & If [tex]\( p(x) = f(x) + 2 \)[/tex], write down the coordinates of the turning point of [tex]\( p \)[/tex]. & (2) \\
\hline
2.1.8 &
\begin{tabular}{l}
Determine the value of [tex]\( k \)[/tex] for which the straight line [tex]\( y = 2x + k \)[/tex] \\
will be a tangent to [tex]\( f \)[/tex].
\end{tabular}
& (4) \\
\hline
& & \textbf{Total: 20} \\
\hline
\end{tabular}


Sagot :

Sure! Let's solve each part of the question step-by-step:

### 2.1.1: Write down the equation of the asymptote of [tex]\( g \)[/tex].
The equation of the asymptote is a horizontal line that the graph approaches but never reaches. For the function [tex]\( g(x) = 2\left(\frac{1}{2}\right)^{x+1} - 4 \)[/tex], the horizontal asymptote is [tex]\( y = -4 \)[/tex].

### Answer:
[tex]\[ y = -4 \][/tex]

### 2.1.2: Write down the coordinates of D.
The turning point (vertex) of the quadratic function [tex]\( f(x) = -(x-3)^2 + 25 \)[/tex] can be found by observing the standard form [tex]\( f(x) = a(x-h)^2 + k \)[/tex], where [tex]\((h, k)\)[/tex] is the vertex. Here, the vertex is at [tex]\((3, 25)\)[/tex].

### Answer:
[tex]\[ D = (3, 25) \][/tex]

### 2.1.3: Write down the range of [tex]\( f \)[/tex].
The function [tex]\( f(x) = -(x-3)^2 + 25 \)[/tex] is a downward-opening parabola with a maximum value at the vertex [tex]\((3, 25)\)[/tex]. Therefore, the range of [tex]\( f \)[/tex] is [tex]\((-\infty, 25]\)[/tex].

### Answer:
[tex]\[ \text{Range of } f: (-\infty, 25] \][/tex]

### 2.1.4: Calculate the length of [tex]\( EB \)[/tex].
[tex]\( E \)[/tex] is the point where [tex]\( f \)[/tex] cuts the y-axis. Evaluating [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = -(0-3)^2 + 25 = -9 + 25 = 16 \][/tex]
So, [tex]\( E = (0, 16) \)[/tex].

[tex]\( B \)[/tex] is the point where [tex]\( g \)[/tex] cuts the y-axis. Evaluating [tex]\( g(0) \)[/tex]:
[tex]\[ g(0) = 2\left(\frac{1}{2}\right)^{0+1} - 4 = 2\left(\frac{1}{2}\right) - 4 = 1 - 4 = -3 \][/tex]
So, [tex]\( B = (0, -3) \)[/tex].

The length of [tex]\( EB \)[/tex] is the vertical distance between the y-coordinates of [tex]\( E \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ \text{Length of } EB = |16 - (-3)| = |16 + 3| = 19 \][/tex]

### Answer:
[tex]\[ \text{Length of } EB = 19 \][/tex]

### 2.1.5: Determine the values of [tex]\( x \)[/tex] for which [tex]\( f \)[/tex] is decreasing.
For the quadratic function [tex]\( f(x) = -(x-3)^2 + 25 \)[/tex], it decreases when [tex]\( x \)[/tex] is to the right of the vertex. Since the vertex is at [tex]\( x = 3 \)[/tex], the function is decreasing for [tex]\( x > 3 \)[/tex].

### Answer:
[tex]\[ x \in (3, \infty) \][/tex]

### 2.1.6: Calculate the average gradient between points A and B.
Point [tex]\( A \)[/tex] is where [tex]\( f \)[/tex] cuts the x-axis. Solving [tex]\( f(x) = 0 \)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ 0 = -(x-3)^2 + 25 \][/tex]
[tex]\[ (x-3)^2 = 25 \][/tex]
[tex]\[ x - 3= \pm 5 \][/tex]
Thus, the roots are [tex]\( x = 3 + 5 = 8 \)[/tex] and [tex]\( x = 3 - 5 = -2 \)[/tex]. If considering [tex]\( A \)[/tex] to be [tex]\( (8, 0) \)[/tex].

From part 2.1.4, [tex]\( B = (0, -3) \)[/tex].

The average gradient between [tex]\( A = (8, 0) \)[/tex] and [tex]\( B = (0, -3) \)[/tex]:
[tex]\[ \text{Average Gradient} = \frac{B_y - A_y}{B_x - A_x} = \frac{-3 - 0}{0 - 8} = \frac{-3}{-8} = 0.375 \][/tex]

### Answer:
[tex]\[ \text{Average Gradient} = 0.375 \][/tex]

### 2.1.7: If [tex]\( p(x) = f(x) + 2 \)[/tex], write down the coordinates of the turning point [tex]\( p \)[/tex].
The function [tex]\( p(x) = f(x) + 2 \)[/tex] is obtained by shifting [tex]\( f(x) \)[/tex] upward by 2 units. Therefore, the turning point [tex]\( D \)[/tex] of [tex]\( f \)[/tex] shifts to [tex]\( (3, 25 + 2) = (3, 27) \)[/tex].

### Answer:
[tex]\[ D_p = (3, 27) \][/tex]

### 2.1.8: Determine the value of [tex]\( k \)[/tex] for which the straight line [tex]\( y = 2x + k \)[/tex] will be a tangent to [tex]\( f \)[/tex].
To find [tex]\( k \)[/tex], we need the line [tex]\( y = 2x + k \)[/tex] to be tangent to [tex]\( f \)[/tex] at a single point. This happens where the slope of [tex]\( f \)[/tex] matches the slope of the line.

Given [tex]\( f(x) = -(x-3)^2 + 25 \)[/tex], the derivative [tex]\( f'(x) = -2(x-3) \)[/tex]. Equating this to the slope of the line (2):
[tex]\[ -2(x-3) = 2 \][/tex]
[tex]\[ -2x + 6 = 2 \][/tex]
[tex]\[ -2x = -4 \][/tex]
[tex]\[ x = 2 \][/tex]

Now, find [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = -(2-3)^2 + 25 = -1 + 25 = 24 \][/tex]

Substitute this into the line equation [tex]\( y = 2x + k \)[/tex] with [tex]\( x = 2 \)[/tex] and [tex]\( y = 24 \)[/tex]:
[tex]\[ 24 = 2(2) + k \][/tex]
[tex]\[ 24 = 4 + k \][/tex]
[tex]\[ k = 20 \][/tex]

### Answer:
[tex]\[ k = 20 \][/tex]

These are the detailed solutions to each part of the question based on mathematical analysis.