Join IDNLearn.com and start getting the answers you've been searching for. Our community provides accurate and timely answers to help you understand and solve any issue.
Sagot :
Let's address each part of the question step-by-step:
### 9.1 Domain of [tex]\( g(x) \)[/tex]
The function [tex]\( g(x) = \frac{6}{x+3} + \frac{3}{2} \)[/tex] has a term [tex]\(\frac{6}{x+3}\)[/tex]. For this term to be defined, the denominator [tex]\( x+3 \neq 0 \)[/tex] must hold. Thus, the domain of [tex]\( g(x) \)[/tex] is:
[tex]\[ x \neq -3 \][/tex]
### 9.2 Range of [tex]\( g(x) \)[/tex]
We analyze [tex]\( g(x) = \frac{6}{x+3} + \frac{3}{2} \)[/tex].
The term [tex]\(\frac{6}{x+3}\)[/tex] can take any real number except zero. Since we are adding [tex]\(\frac{3}{2}\)[/tex] to it, the range of [tex]\( g(x) \)[/tex] is all real numbers except [tex]\(\frac{3}{2}\)[/tex], because the term [tex]\(\frac{6}{x+3}\)[/tex] will never be zero, making the overall expression equal to [tex]\(\frac{3}{2}\)[/tex].
### 9.3 Shifting [tex]\( g(x) \)[/tex] to coincide with [tex]\( h(x) \)[/tex]
To make the graph of [tex]\( g(x) \)[/tex] coincide with [tex]\( h(x) = \frac{6}{x-3} + 2 \)[/tex]:
#### 9.3.1 Horizontal Shift
For [tex]\( g(x) \)[/tex] to match [tex]\( h(x) \)[/tex], [tex]\( x + 3 \)[/tex] in [tex]\( g(x) \)[/tex] should become [tex]\( x - 3 \)[/tex] in [tex]\( h(x) \)[/tex]. This implies a shift of:
[tex]\[ 6 \text{ units to the right} \][/tex]
#### 9.3.2 Vertical Shift
For the constant terms to match, [tex]\( \frac{3}{2} \)[/tex] in [tex]\( g(x) \)[/tex] should become [tex]\( 2 \)[/tex] in [tex]\( h(x) \)[/tex]. Therefore, the vertical shift needed is:
[tex]\[ \left( 2 - \frac{3}{2} \right) = \frac{1}{2} \text{ unit up} \][/tex]
### 9.4 Equations of the asymptotes of [tex]\( g(x) \)[/tex]
For [tex]\( g(x) = \frac{6}{x+3} + \frac{3}{2} \)[/tex]:
- Vertical asymptote: This occurs where the denominator is zero, i.e., [tex]\( x = -3 \)[/tex].
- Horizontal asymptote: As [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex], [tex]\(\frac{6}{x+3} \rightarrow 0\)[/tex], and hence [tex]\( g(x) \rightarrow \frac{3}{2} \)[/tex].
The asymptotes are:
[tex]\[ x = -3 \][/tex]
[tex]\[ y = \frac{3}{2} \][/tex]
### 9.5 Calculate the [tex]\( x \)[/tex]-intercept of [tex]\( g(x) \)[/tex]
To find the [tex]\( x \)[/tex]-intercept, we set [tex]\( g(x) = 0 \)[/tex]:
[tex]\[ 0 = \frac{6}{x+3} + \frac{3}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{6}{x+3} = -\frac{3}{2} \][/tex]
[tex]\[ 6 = -\frac{3}{2}(x+3) \][/tex]
[tex]\[ 12 = -3(x+3) \][/tex]
[tex]\[ 12 = -3x - 9 \][/tex]
[tex]\[ 21 = -3x \][/tex]
[tex]\[ x = -7 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept is:
[tex]\[ x = -7 \][/tex]
### 9.6 Sketch the graph of [tex]\( g(x) \)[/tex]
(Sketch not provided here as per the question instructions. You would typically draw the graph showing asymptotes [tex]\( x = -3 \)[/tex] and [tex]\( y = \frac{3}{2} \)[/tex] along with the [tex]\( x \)[/tex]-intercept at [tex]\( x = -7 \)[/tex].)
### 9.7 Axis of symmetry of [tex]\( g(x) \)[/tex]
Given that [tex]\( h(x) = -x + k \)[/tex] is an axis of symmetry, we have:
[tex]\[ g(0) = \frac{6}{0+3} + \frac{3}{2} = 2 + 1.5 = 3.5 \][/tex]
So, the line [tex]\( y = -x + k \)[/tex] passes through the point [tex]\( (0, 3.5) \)[/tex]. Hence:
[tex]\[ k = 3.5 \][/tex]
### 9.8 Values of [tex]\( x \)[/tex] for [tex]\( \frac{6}{x+3} - \frac{3}{2} > -x + k \)[/tex]
We seek the values of [tex]\( x \)[/tex] for which:
[tex]\[ \frac{6}{x+3} - \frac{3}{2} > -x + 3.5 \][/tex]
Rearrange to form:
[tex]\[ \frac{6}{x+3} - \frac{3}{2} + x > 3.5 \][/tex]
Solving this inequality algebraically and graphically can show the regions where this holds.
### 9.9 Reflection of [tex]\( g(x) \)[/tex] in the [tex]\( x \)[/tex]-axis
Reflecting [tex]\( g(x) = \frac{6}{x+3} + \frac{3}{2} \)[/tex] in the [tex]\( x \)[/tex]-axis:
[tex]\[ g(x) \rightarrow -g(x) \][/tex]
Thus,
[tex]\[ y = -\left( \frac{6}{x+3} + \frac{3}{2} \right) \][/tex]
[tex]\[ y = -\frac{6}{x+3} - \frac{3}{2} \][/tex]
The new equation is:
[tex]\[ y = -\frac{6}{x+3} - \frac{3}{2} \][/tex]
### 9.1 Domain of [tex]\( g(x) \)[/tex]
The function [tex]\( g(x) = \frac{6}{x+3} + \frac{3}{2} \)[/tex] has a term [tex]\(\frac{6}{x+3}\)[/tex]. For this term to be defined, the denominator [tex]\( x+3 \neq 0 \)[/tex] must hold. Thus, the domain of [tex]\( g(x) \)[/tex] is:
[tex]\[ x \neq -3 \][/tex]
### 9.2 Range of [tex]\( g(x) \)[/tex]
We analyze [tex]\( g(x) = \frac{6}{x+3} + \frac{3}{2} \)[/tex].
The term [tex]\(\frac{6}{x+3}\)[/tex] can take any real number except zero. Since we are adding [tex]\(\frac{3}{2}\)[/tex] to it, the range of [tex]\( g(x) \)[/tex] is all real numbers except [tex]\(\frac{3}{2}\)[/tex], because the term [tex]\(\frac{6}{x+3}\)[/tex] will never be zero, making the overall expression equal to [tex]\(\frac{3}{2}\)[/tex].
### 9.3 Shifting [tex]\( g(x) \)[/tex] to coincide with [tex]\( h(x) \)[/tex]
To make the graph of [tex]\( g(x) \)[/tex] coincide with [tex]\( h(x) = \frac{6}{x-3} + 2 \)[/tex]:
#### 9.3.1 Horizontal Shift
For [tex]\( g(x) \)[/tex] to match [tex]\( h(x) \)[/tex], [tex]\( x + 3 \)[/tex] in [tex]\( g(x) \)[/tex] should become [tex]\( x - 3 \)[/tex] in [tex]\( h(x) \)[/tex]. This implies a shift of:
[tex]\[ 6 \text{ units to the right} \][/tex]
#### 9.3.2 Vertical Shift
For the constant terms to match, [tex]\( \frac{3}{2} \)[/tex] in [tex]\( g(x) \)[/tex] should become [tex]\( 2 \)[/tex] in [tex]\( h(x) \)[/tex]. Therefore, the vertical shift needed is:
[tex]\[ \left( 2 - \frac{3}{2} \right) = \frac{1}{2} \text{ unit up} \][/tex]
### 9.4 Equations of the asymptotes of [tex]\( g(x) \)[/tex]
For [tex]\( g(x) = \frac{6}{x+3} + \frac{3}{2} \)[/tex]:
- Vertical asymptote: This occurs where the denominator is zero, i.e., [tex]\( x = -3 \)[/tex].
- Horizontal asymptote: As [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex], [tex]\(\frac{6}{x+3} \rightarrow 0\)[/tex], and hence [tex]\( g(x) \rightarrow \frac{3}{2} \)[/tex].
The asymptotes are:
[tex]\[ x = -3 \][/tex]
[tex]\[ y = \frac{3}{2} \][/tex]
### 9.5 Calculate the [tex]\( x \)[/tex]-intercept of [tex]\( g(x) \)[/tex]
To find the [tex]\( x \)[/tex]-intercept, we set [tex]\( g(x) = 0 \)[/tex]:
[tex]\[ 0 = \frac{6}{x+3} + \frac{3}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{6}{x+3} = -\frac{3}{2} \][/tex]
[tex]\[ 6 = -\frac{3}{2}(x+3) \][/tex]
[tex]\[ 12 = -3(x+3) \][/tex]
[tex]\[ 12 = -3x - 9 \][/tex]
[tex]\[ 21 = -3x \][/tex]
[tex]\[ x = -7 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercept is:
[tex]\[ x = -7 \][/tex]
### 9.6 Sketch the graph of [tex]\( g(x) \)[/tex]
(Sketch not provided here as per the question instructions. You would typically draw the graph showing asymptotes [tex]\( x = -3 \)[/tex] and [tex]\( y = \frac{3}{2} \)[/tex] along with the [tex]\( x \)[/tex]-intercept at [tex]\( x = -7 \)[/tex].)
### 9.7 Axis of symmetry of [tex]\( g(x) \)[/tex]
Given that [tex]\( h(x) = -x + k \)[/tex] is an axis of symmetry, we have:
[tex]\[ g(0) = \frac{6}{0+3} + \frac{3}{2} = 2 + 1.5 = 3.5 \][/tex]
So, the line [tex]\( y = -x + k \)[/tex] passes through the point [tex]\( (0, 3.5) \)[/tex]. Hence:
[tex]\[ k = 3.5 \][/tex]
### 9.8 Values of [tex]\( x \)[/tex] for [tex]\( \frac{6}{x+3} - \frac{3}{2} > -x + k \)[/tex]
We seek the values of [tex]\( x \)[/tex] for which:
[tex]\[ \frac{6}{x+3} - \frac{3}{2} > -x + 3.5 \][/tex]
Rearrange to form:
[tex]\[ \frac{6}{x+3} - \frac{3}{2} + x > 3.5 \][/tex]
Solving this inequality algebraically and graphically can show the regions where this holds.
### 9.9 Reflection of [tex]\( g(x) \)[/tex] in the [tex]\( x \)[/tex]-axis
Reflecting [tex]\( g(x) = \frac{6}{x+3} + \frac{3}{2} \)[/tex] in the [tex]\( x \)[/tex]-axis:
[tex]\[ g(x) \rightarrow -g(x) \][/tex]
Thus,
[tex]\[ y = -\left( \frac{6}{x+3} + \frac{3}{2} \right) \][/tex]
[tex]\[ y = -\frac{6}{x+3} - \frac{3}{2} \][/tex]
The new equation is:
[tex]\[ y = -\frac{6}{x+3} - \frac{3}{2} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.