Discover new knowledge and insights with IDNLearn.com's extensive Q&A platform. Discover the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
To determine the hydroxide ion concentration [tex]\(\left[ \text{OH}^- \right]\)[/tex] for a solution at [tex]\( 25^{\circ} \text{C} \)[/tex] with a given hydronium ion concentration [tex]\(\left[ \text{H}_3\text{O}^+ \right]=2.35 \times 10^{-3} \, \text{M}\)[/tex], we use the relationship between the concentrations of [tex]\(\left[ \text{H}_3\text{O}^+ \right]\)[/tex] and [tex]\(\left[ \text{OH}^- \right]\)[/tex] governed by the ion product constant of water [tex]\( K_w \)[/tex].
At [tex]\( 25^{\circ} \text{C} \)[/tex], the ion product constant of water [tex]\( K_w \)[/tex] is:
[tex]\[ K_w = \left[ \text{H}_3\text{O}^+ \right] \left[ \text{OH}^- \right] = 1.0 \times 10^{-14} \, \text{M}^2 \][/tex]
Given:
[tex]\[\left[ \text{H}_3\text{O}^+ \right] = 2.35 \times 10^{-3} \, \text{M}\][/tex]
We need to find [tex]\(\left[ \text{OH}^- \right]\)[/tex]. Rearrange the equation for [tex]\( K_w \)[/tex]:
[tex]\[ \left[ \text{OH}^- \right] = \frac{K_w}{\left[ \text{H}_3\text{O}^+ \right]} \][/tex]
Substitute [tex]\( K_w = 1.0 \times 10^{-14} \)[/tex] and [tex]\(\left[ \text{H}_3\text{O}^+ \right]=2.35 \times 10^{-3} \)[/tex]:
[tex]\[ \left[ \text{OH}^- \right] = \frac{1.0 \times 10^{-14}}{2.35 \times 10^{-3}} \][/tex]
Perform the division:
[tex]\[ \left[ \text{OH}^- \right] = 4.26 \times 10^{-12} \, \text{M} \][/tex]
Therefore, the [tex]\(\left[ \text{OH}^- \right]\)[/tex] for the given solution is:
[tex]\[ \boxed{4.26 \times 10^{-12} \, \text{M}} \][/tex]
From the provided options, the correct answer is E. [tex]\( 4.26 \times 10^{-12} \, \text{M} \)[/tex].
At [tex]\( 25^{\circ} \text{C} \)[/tex], the ion product constant of water [tex]\( K_w \)[/tex] is:
[tex]\[ K_w = \left[ \text{H}_3\text{O}^+ \right] \left[ \text{OH}^- \right] = 1.0 \times 10^{-14} \, \text{M}^2 \][/tex]
Given:
[tex]\[\left[ \text{H}_3\text{O}^+ \right] = 2.35 \times 10^{-3} \, \text{M}\][/tex]
We need to find [tex]\(\left[ \text{OH}^- \right]\)[/tex]. Rearrange the equation for [tex]\( K_w \)[/tex]:
[tex]\[ \left[ \text{OH}^- \right] = \frac{K_w}{\left[ \text{H}_3\text{O}^+ \right]} \][/tex]
Substitute [tex]\( K_w = 1.0 \times 10^{-14} \)[/tex] and [tex]\(\left[ \text{H}_3\text{O}^+ \right]=2.35 \times 10^{-3} \)[/tex]:
[tex]\[ \left[ \text{OH}^- \right] = \frac{1.0 \times 10^{-14}}{2.35 \times 10^{-3}} \][/tex]
Perform the division:
[tex]\[ \left[ \text{OH}^- \right] = 4.26 \times 10^{-12} \, \text{M} \][/tex]
Therefore, the [tex]\(\left[ \text{OH}^- \right]\)[/tex] for the given solution is:
[tex]\[ \boxed{4.26 \times 10^{-12} \, \text{M}} \][/tex]
From the provided options, the correct answer is E. [tex]\( 4.26 \times 10^{-12} \, \text{M} \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.