IDNLearn.com offers a unique blend of expert answers and community insights. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.
Sagot :
To determine the hydroxide ion concentration [tex]\(\left[ \text{OH}^- \right]\)[/tex] for a solution at [tex]\( 25^{\circ} \text{C} \)[/tex] with a given hydronium ion concentration [tex]\(\left[ \text{H}_3\text{O}^+ \right]=2.35 \times 10^{-3} \, \text{M}\)[/tex], we use the relationship between the concentrations of [tex]\(\left[ \text{H}_3\text{O}^+ \right]\)[/tex] and [tex]\(\left[ \text{OH}^- \right]\)[/tex] governed by the ion product constant of water [tex]\( K_w \)[/tex].
At [tex]\( 25^{\circ} \text{C} \)[/tex], the ion product constant of water [tex]\( K_w \)[/tex] is:
[tex]\[ K_w = \left[ \text{H}_3\text{O}^+ \right] \left[ \text{OH}^- \right] = 1.0 \times 10^{-14} \, \text{M}^2 \][/tex]
Given:
[tex]\[\left[ \text{H}_3\text{O}^+ \right] = 2.35 \times 10^{-3} \, \text{M}\][/tex]
We need to find [tex]\(\left[ \text{OH}^- \right]\)[/tex]. Rearrange the equation for [tex]\( K_w \)[/tex]:
[tex]\[ \left[ \text{OH}^- \right] = \frac{K_w}{\left[ \text{H}_3\text{O}^+ \right]} \][/tex]
Substitute [tex]\( K_w = 1.0 \times 10^{-14} \)[/tex] and [tex]\(\left[ \text{H}_3\text{O}^+ \right]=2.35 \times 10^{-3} \)[/tex]:
[tex]\[ \left[ \text{OH}^- \right] = \frac{1.0 \times 10^{-14}}{2.35 \times 10^{-3}} \][/tex]
Perform the division:
[tex]\[ \left[ \text{OH}^- \right] = 4.26 \times 10^{-12} \, \text{M} \][/tex]
Therefore, the [tex]\(\left[ \text{OH}^- \right]\)[/tex] for the given solution is:
[tex]\[ \boxed{4.26 \times 10^{-12} \, \text{M}} \][/tex]
From the provided options, the correct answer is E. [tex]\( 4.26 \times 10^{-12} \, \text{M} \)[/tex].
At [tex]\( 25^{\circ} \text{C} \)[/tex], the ion product constant of water [tex]\( K_w \)[/tex] is:
[tex]\[ K_w = \left[ \text{H}_3\text{O}^+ \right] \left[ \text{OH}^- \right] = 1.0 \times 10^{-14} \, \text{M}^2 \][/tex]
Given:
[tex]\[\left[ \text{H}_3\text{O}^+ \right] = 2.35 \times 10^{-3} \, \text{M}\][/tex]
We need to find [tex]\(\left[ \text{OH}^- \right]\)[/tex]. Rearrange the equation for [tex]\( K_w \)[/tex]:
[tex]\[ \left[ \text{OH}^- \right] = \frac{K_w}{\left[ \text{H}_3\text{O}^+ \right]} \][/tex]
Substitute [tex]\( K_w = 1.0 \times 10^{-14} \)[/tex] and [tex]\(\left[ \text{H}_3\text{O}^+ \right]=2.35 \times 10^{-3} \)[/tex]:
[tex]\[ \left[ \text{OH}^- \right] = \frac{1.0 \times 10^{-14}}{2.35 \times 10^{-3}} \][/tex]
Perform the division:
[tex]\[ \left[ \text{OH}^- \right] = 4.26 \times 10^{-12} \, \text{M} \][/tex]
Therefore, the [tex]\(\left[ \text{OH}^- \right]\)[/tex] for the given solution is:
[tex]\[ \boxed{4.26 \times 10^{-12} \, \text{M}} \][/tex]
From the provided options, the correct answer is E. [tex]\( 4.26 \times 10^{-12} \, \text{M} \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.