IDNLearn.com provides a user-friendly platform for finding and sharing accurate answers. Find the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Let's tackle each part of the question methodically.
### 5.1 Coordinates of [tex]\( E \)[/tex]
The turning point of a quadratic function in the form [tex]\( f(x) = a(x - h)^2 + k \)[/tex] is at the point [tex]\((h, k)\)[/tex]. Given:
[tex]\[ f(x) = -\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} \][/tex]
The vertex, which is the turning point [tex]\( E \)[/tex], has the coordinates:
[tex]\[ E \left( \frac{7}{2}, \frac{81}{4} \right) \][/tex]
### 5.2 Average Gradient of [tex]\( f \)[/tex] between [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex]
The average gradient of a function between two points [tex]\( x=a \)[/tex] and [tex]\( x=b \)[/tex] is calculated as:
[tex]\[ \text{Average Gradient} = \frac{f(b) - f(a)}{b - a} \][/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = -\left(1 - \frac{7}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ f(1) = -\left(-\frac{5}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ f(1) = -\left(\frac{25}{4}\right) + \frac{81}{4} \][/tex]
[tex]\[ f(1) = -\frac{25}{4} + \frac{81}{4} = \frac{56}{4} = 14 \][/tex]
For [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = -\left(5 - \frac{7}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ f(5) = -\left(\frac{3}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ f(5) = -\frac{9}{4} + \frac{81}{4} = \frac{72}{4} = 18 \][/tex]
Now, average gradient:
[tex]\[ \text{Average Gradient} = \frac{f(5) - f(1)}{5-1} = \frac{18 - 14}{4} = \frac{4}{4} = 1 \][/tex]
### 5.3 Calculate the [tex]\( x \)[/tex]-coordinate of Point [tex]\( D \)[/tex]
To find the intersection points of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ f(x) = g(x) \][/tex]
[tex]\[ -\left(x-\frac{7}{2}\right)^2 + \frac{81}{4} = -3x + 24 \][/tex]
First, simplify:
[tex]\[ \left(x-\frac{7}{2}\right)^2 = 3x - 24 + \frac{81}{4} \][/tex]
[tex]\[ \left(x-\frac{7}{2}\right)^2 = 3x - 24 + 20.25 \][/tex]
[tex]\[ \left(x-\frac{7}{2}\right)^2 = 3x - 3.75 \][/tex]
Simplify into the quadratic equation:
[tex]\[ \left(x - \frac{7}{2}\right)^2 - 3x + 3.75 = 0 \][/tex]
[tex]\[ x^2 - 7x + \frac{49}{4} - 3x + 3.75 = 0 \][/tex]
[tex]\[ x^2 - 10x + \frac{49}{4} + 3.75 = 0 \][/tex]
[tex]\[ x^2 - 10x + \frac{64}{4} = 0 \][/tex]
[tex]\[ x^2 - 10x + 16 = 0 \][/tex]
Solve using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ a = 1, b = -10, c = 16 \][/tex]
[tex]\[ x = \frac{10 \pm \sqrt{100 - 64}}{2} \][/tex]
[tex]\[ x = \frac{10 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ x = \frac{10 \pm 6}{2} \][/tex]
[tex]\[ x = 8 \quad \text{or} \quad x = 2 \][/tex]
Assuming [tex]\( D \)[/tex] has the higher [tex]\( x \)[/tex] value, [tex]\( a = 8 \)[/tex].
### 5.4 Determine [tex]\( ST \)[/tex] in terms of [tex]\( x \)[/tex]
[tex]\( S(x, y) \)[/tex] is a point on the graph of [tex]\( f \)[/tex], and [tex]\( T(x, y) \)[/tex] is a point on the graph of [tex]\( g \)[/tex]:
[tex]\[ ST = f(x) - g(x) \][/tex]
Given:
[tex]\[ f(x) = -\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ g(x) = -3x + 24 \][/tex]
Thus:
[tex]\[ ST = -\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} + 3x - 24 \][/tex]
### 5.5 Calculate the Maximum Length of [tex]\( ST \)[/tex]
To find the maximum length of [tex]\( ST \)[/tex]:
[tex]\[ ST = -\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} + 3x - 24 \][/tex]
Find the critical points by differentiating and setting the derivative to zero:
[tex]\[ \frac{d}{dx} \left[-\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} + 3x - 24\right] = 0 \][/tex]
[tex]\[ \frac{d}{dx} \left[ -\left(x^2 - 7x + \frac{49}{4}\right) + \frac{81}{4} + 3x - 24 \right] = 0 \][/tex]
[tex]\[ -2 (x - \frac{7}{2}) + 3 = 0 \][/tex]
[tex]\[ -2x + 7 + 3 = 0 \][/tex]
[tex]\[ -2x + 10 = 0 \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore:
[tex]\[ ST_{\max} = f(5) - g(5) \][/tex]
Evaluate:
[tex]\[ f(5) = 18 \][/tex]
[tex]\[ g(5) = -15 + 24 = 9 \][/tex]
[tex]\[ ST_{\max} = 18 - 9 = 9 \][/tex]
So the maximum length of [tex]\( ST \)[/tex] is [tex]\( 9 \)[/tex].
### 5.1 Coordinates of [tex]\( E \)[/tex]
The turning point of a quadratic function in the form [tex]\( f(x) = a(x - h)^2 + k \)[/tex] is at the point [tex]\((h, k)\)[/tex]. Given:
[tex]\[ f(x) = -\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} \][/tex]
The vertex, which is the turning point [tex]\( E \)[/tex], has the coordinates:
[tex]\[ E \left( \frac{7}{2}, \frac{81}{4} \right) \][/tex]
### 5.2 Average Gradient of [tex]\( f \)[/tex] between [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex]
The average gradient of a function between two points [tex]\( x=a \)[/tex] and [tex]\( x=b \)[/tex] is calculated as:
[tex]\[ \text{Average Gradient} = \frac{f(b) - f(a)}{b - a} \][/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = -\left(1 - \frac{7}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ f(1) = -\left(-\frac{5}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ f(1) = -\left(\frac{25}{4}\right) + \frac{81}{4} \][/tex]
[tex]\[ f(1) = -\frac{25}{4} + \frac{81}{4} = \frac{56}{4} = 14 \][/tex]
For [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = -\left(5 - \frac{7}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ f(5) = -\left(\frac{3}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ f(5) = -\frac{9}{4} + \frac{81}{4} = \frac{72}{4} = 18 \][/tex]
Now, average gradient:
[tex]\[ \text{Average Gradient} = \frac{f(5) - f(1)}{5-1} = \frac{18 - 14}{4} = \frac{4}{4} = 1 \][/tex]
### 5.3 Calculate the [tex]\( x \)[/tex]-coordinate of Point [tex]\( D \)[/tex]
To find the intersection points of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ f(x) = g(x) \][/tex]
[tex]\[ -\left(x-\frac{7}{2}\right)^2 + \frac{81}{4} = -3x + 24 \][/tex]
First, simplify:
[tex]\[ \left(x-\frac{7}{2}\right)^2 = 3x - 24 + \frac{81}{4} \][/tex]
[tex]\[ \left(x-\frac{7}{2}\right)^2 = 3x - 24 + 20.25 \][/tex]
[tex]\[ \left(x-\frac{7}{2}\right)^2 = 3x - 3.75 \][/tex]
Simplify into the quadratic equation:
[tex]\[ \left(x - \frac{7}{2}\right)^2 - 3x + 3.75 = 0 \][/tex]
[tex]\[ x^2 - 7x + \frac{49}{4} - 3x + 3.75 = 0 \][/tex]
[tex]\[ x^2 - 10x + \frac{49}{4} + 3.75 = 0 \][/tex]
[tex]\[ x^2 - 10x + \frac{64}{4} = 0 \][/tex]
[tex]\[ x^2 - 10x + 16 = 0 \][/tex]
Solve using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ a = 1, b = -10, c = 16 \][/tex]
[tex]\[ x = \frac{10 \pm \sqrt{100 - 64}}{2} \][/tex]
[tex]\[ x = \frac{10 \pm \sqrt{36}}{2} \][/tex]
[tex]\[ x = \frac{10 \pm 6}{2} \][/tex]
[tex]\[ x = 8 \quad \text{or} \quad x = 2 \][/tex]
Assuming [tex]\( D \)[/tex] has the higher [tex]\( x \)[/tex] value, [tex]\( a = 8 \)[/tex].
### 5.4 Determine [tex]\( ST \)[/tex] in terms of [tex]\( x \)[/tex]
[tex]\( S(x, y) \)[/tex] is a point on the graph of [tex]\( f \)[/tex], and [tex]\( T(x, y) \)[/tex] is a point on the graph of [tex]\( g \)[/tex]:
[tex]\[ ST = f(x) - g(x) \][/tex]
Given:
[tex]\[ f(x) = -\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} \][/tex]
[tex]\[ g(x) = -3x + 24 \][/tex]
Thus:
[tex]\[ ST = -\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} + 3x - 24 \][/tex]
### 5.5 Calculate the Maximum Length of [tex]\( ST \)[/tex]
To find the maximum length of [tex]\( ST \)[/tex]:
[tex]\[ ST = -\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} + 3x - 24 \][/tex]
Find the critical points by differentiating and setting the derivative to zero:
[tex]\[ \frac{d}{dx} \left[-\left(x - \frac{7}{2}\right)^2 + \frac{81}{4} + 3x - 24\right] = 0 \][/tex]
[tex]\[ \frac{d}{dx} \left[ -\left(x^2 - 7x + \frac{49}{4}\right) + \frac{81}{4} + 3x - 24 \right] = 0 \][/tex]
[tex]\[ -2 (x - \frac{7}{2}) + 3 = 0 \][/tex]
[tex]\[ -2x + 7 + 3 = 0 \][/tex]
[tex]\[ -2x + 10 = 0 \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore:
[tex]\[ ST_{\max} = f(5) - g(5) \][/tex]
Evaluate:
[tex]\[ f(5) = 18 \][/tex]
[tex]\[ g(5) = -15 + 24 = 9 \][/tex]
[tex]\[ ST_{\max} = 18 - 9 = 9 \][/tex]
So the maximum length of [tex]\( ST \)[/tex] is [tex]\( 9 \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.