IDNLearn.com offers a comprehensive solution for finding accurate answers quickly. Whether it's a simple query or a complex problem, our community has the answers you need.
Sagot :
Sure, let's solve this step-by-step to determine which sequence of coin flips is closest to the theoretical probability of 2 heads in every 3 flips, which translates to [tex]\(\frac{2}{3}\)[/tex] or approximately 0.6667 heads.
First, we need to calculate the proportion of heads in each of the sequences:
### Sequence A:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & T & T & T & H & T & T & T & T & H & T & T \\ \hline \end{array} \][/tex]
Number of heads (H) = 3
Total number of flips = 12
Proportion of heads for sequence A:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{3}{12} = 0.25 \][/tex]
### Sequence B:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & H & H & T & T & H & T & T & H & H & H & H \\ \hline \end{array} \][/tex]
Number of heads (H) = 8
Total number of flips = 12
Proportion of heads for sequence B:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{8}{12} = 0.6667 \][/tex]
### Sequence C:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & H & T & T & T & T & H & T & H & T & T & T \\ \hline \end{array} \][/tex]
Number of heads (H) = 4
Total number of flips = 12
Proportion of heads for sequence C:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{4}{12} = 0.3333 \][/tex]
### Sequence D:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & T & H & T & H & T & T & T & H & T & T & H & H \\ \hline \end{array} \][/tex]
Number of heads (H) = 5
Total number of flips = 12
Proportion of heads for sequence D:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{5}{12} = 0.4167 \][/tex]
Now, we compare the proportions to the theoretical proportion of 0.6667 and find the sequence closest to it:
- Difference for sequence A: [tex]\( |0.25 - 0.6667| = 0.4167 \)[/tex]
- Difference for sequence B: [tex]\( |0.6667 - 0.6667| = 0.0 \)[/tex]
- Difference for sequence C: [tex]\( |0.3333 - 0.6667| = 0.3333 \)[/tex]
- Difference for sequence D: [tex]\( |0.4167 - 0.6667| = 0.25 \)[/tex]
The smallest difference is 0.0 for sequence B. Therefore, the sequence that is most consistent with the theoretical model is:
[tex]\[ \text{Sequence B} \][/tex]
First, we need to calculate the proportion of heads in each of the sequences:
### Sequence A:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & T & T & T & H & T & T & T & T & H & T & T \\ \hline \end{array} \][/tex]
Number of heads (H) = 3
Total number of flips = 12
Proportion of heads for sequence A:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{3}{12} = 0.25 \][/tex]
### Sequence B:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & H & H & T & T & H & T & T & H & H & H & H \\ \hline \end{array} \][/tex]
Number of heads (H) = 8
Total number of flips = 12
Proportion of heads for sequence B:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{8}{12} = 0.6667 \][/tex]
### Sequence C:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & H & T & T & T & T & H & T & H & T & T & T \\ \hline \end{array} \][/tex]
Number of heads (H) = 4
Total number of flips = 12
Proportion of heads for sequence C:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{4}{12} = 0.3333 \][/tex]
### Sequence D:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & T & H & T & H & T & T & T & H & T & T & H & H \\ \hline \end{array} \][/tex]
Number of heads (H) = 5
Total number of flips = 12
Proportion of heads for sequence D:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{5}{12} = 0.4167 \][/tex]
Now, we compare the proportions to the theoretical proportion of 0.6667 and find the sequence closest to it:
- Difference for sequence A: [tex]\( |0.25 - 0.6667| = 0.4167 \)[/tex]
- Difference for sequence B: [tex]\( |0.6667 - 0.6667| = 0.0 \)[/tex]
- Difference for sequence C: [tex]\( |0.3333 - 0.6667| = 0.3333 \)[/tex]
- Difference for sequence D: [tex]\( |0.4167 - 0.6667| = 0.25 \)[/tex]
The smallest difference is 0.0 for sequence B. Therefore, the sequence that is most consistent with the theoretical model is:
[tex]\[ \text{Sequence B} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com for your queries. We’re here to provide accurate answers, so visit us again soon.