Get the most out of your questions with the extensive resources available on IDNLearn.com. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Sure, let's solve this step-by-step to determine which sequence of coin flips is closest to the theoretical probability of 2 heads in every 3 flips, which translates to [tex]\(\frac{2}{3}\)[/tex] or approximately 0.6667 heads.
First, we need to calculate the proportion of heads in each of the sequences:
### Sequence A:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & T & T & T & H & T & T & T & T & H & T & T \\ \hline \end{array} \][/tex]
Number of heads (H) = 3
Total number of flips = 12
Proportion of heads for sequence A:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{3}{12} = 0.25 \][/tex]
### Sequence B:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & H & H & T & T & H & T & T & H & H & H & H \\ \hline \end{array} \][/tex]
Number of heads (H) = 8
Total number of flips = 12
Proportion of heads for sequence B:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{8}{12} = 0.6667 \][/tex]
### Sequence C:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & H & T & T & T & T & H & T & H & T & T & T \\ \hline \end{array} \][/tex]
Number of heads (H) = 4
Total number of flips = 12
Proportion of heads for sequence C:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{4}{12} = 0.3333 \][/tex]
### Sequence D:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & T & H & T & H & T & T & T & H & T & T & H & H \\ \hline \end{array} \][/tex]
Number of heads (H) = 5
Total number of flips = 12
Proportion of heads for sequence D:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{5}{12} = 0.4167 \][/tex]
Now, we compare the proportions to the theoretical proportion of 0.6667 and find the sequence closest to it:
- Difference for sequence A: [tex]\( |0.25 - 0.6667| = 0.4167 \)[/tex]
- Difference for sequence B: [tex]\( |0.6667 - 0.6667| = 0.0 \)[/tex]
- Difference for sequence C: [tex]\( |0.3333 - 0.6667| = 0.3333 \)[/tex]
- Difference for sequence D: [tex]\( |0.4167 - 0.6667| = 0.25 \)[/tex]
The smallest difference is 0.0 for sequence B. Therefore, the sequence that is most consistent with the theoretical model is:
[tex]\[ \text{Sequence B} \][/tex]
First, we need to calculate the proportion of heads in each of the sequences:
### Sequence A:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & T & T & T & H & T & T & T & T & H & T & T \\ \hline \end{array} \][/tex]
Number of heads (H) = 3
Total number of flips = 12
Proportion of heads for sequence A:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{3}{12} = 0.25 \][/tex]
### Sequence B:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & H & H & T & T & H & T & T & H & H & H & H \\ \hline \end{array} \][/tex]
Number of heads (H) = 8
Total number of flips = 12
Proportion of heads for sequence B:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{8}{12} = 0.6667 \][/tex]
### Sequence C:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & H & H & T & T & T & T & H & T & H & T & T & T \\ \hline \end{array} \][/tex]
Number of heads (H) = 4
Total number of flips = 12
Proportion of heads for sequence C:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{4}{12} = 0.3333 \][/tex]
### Sequence D:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Flip} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Result} & T & H & T & H & T & T & T & H & T & T & H & H \\ \hline \end{array} \][/tex]
Number of heads (H) = 5
Total number of flips = 12
Proportion of heads for sequence D:
[tex]\[ \frac{\text{Number of heads}}{\text{Total number of flips}} = \frac{5}{12} = 0.4167 \][/tex]
Now, we compare the proportions to the theoretical proportion of 0.6667 and find the sequence closest to it:
- Difference for sequence A: [tex]\( |0.25 - 0.6667| = 0.4167 \)[/tex]
- Difference for sequence B: [tex]\( |0.6667 - 0.6667| = 0.0 \)[/tex]
- Difference for sequence C: [tex]\( |0.3333 - 0.6667| = 0.3333 \)[/tex]
- Difference for sequence D: [tex]\( |0.4167 - 0.6667| = 0.25 \)[/tex]
The smallest difference is 0.0 for sequence B. Therefore, the sequence that is most consistent with the theoretical model is:
[tex]\[ \text{Sequence B} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.